THE JACOBIAN CONJECTURE: REDUCTION OF DEGREE AND FORMAL EXPANSION OF THE INVERSE

BY HYMAN BASS, 1 EDWIN H. CONNELL² AND DAVID WRIGHT³

CONTENTS

Introduction

- I. The Jacobian Conjecture
 - 1. Statement of the Jacobian Problem; first observations
 - 2. Some history of the Jacobian Conjecture
 - 3. Faulty proofs
 - 4. The use of stabilization and of formal methods
- II. The Reduction Theorem
 - 1. Notation
 - 2. Statement of the Reduction Theorem
 - 3. Reduction to degree 3
 - 4. Proof of the Reduction Theorem
 - 5. T-linearization and unipotent reduction
 - 6. Nilpotent rank 1 Jacobians
- III. The Formal Inverse
 - 1. Notation
 - 2. Abhyankar's Inversion Formula
 - 3. The terms $G_i^{(d)}$
 - 4. The tree expansion $G_i^{(d)} = \sum_T (1/\alpha(T)) \sum_f P_{T,f}$
 - 5. Calculations

References

Introduction

A mapping $F: \mathbb{C}^n \to \mathbb{C}^n$, $F(X) = (F_1(X), \dots, F_n(X))$, is a polynomial mapping if each F_i is a polynomial. How do we recognize when such an F is invertible? The question is unambiguous since, once F is bijective, its set theoretic inverse is automatically polynomial (see Theorem 2.1). When F is

Received by the editors January 9, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 13B25, 13B10, 13B15, 14E05, 14E07; Secondary 05C05.

¹Partially supported by NSF Grant MCS 80-05802.

²Partially supported by NSF Grant MCS 77-28188.

³Partially supported by NSF Grant MCS 80-02844.