BROWNIAN MOTION, GEOMETRY, AND GENERALIZATIONS OF PICARD'S LITTLE THEOREM

BY S. I. GOLDBERG¹ AND C. MUELLER²

ABSTRACT. Brownian motion is introduced as a tool in Riemannian geometry, and it is shown to be useful in the function theory of manifolds, as well as in the study of maps between manifolds. As applications, a generalization of Picard's little theorem, and a version of it for Riemann surfaces of large genus are given.

1. Picard's theorem for nonhyperbolic manifolds. Let M and N be complete Riemannian manifolds with metrics ${}^{M}g$, ${}^{N}g$, resp. Assume $F: M \to N$ is a C^{2} map. F is said to be *harmonic* [2] if its second fundamental form has trace 0. Define the tensor

$$\xi^{\alpha\beta}(x) = {}^{M}g_{ij}\left[\frac{\partial F^{\alpha}}{\partial x^{i}}\frac{\partial F^{\beta}}{\partial x^{j}}\right](x), x \in M.$$

Since $(\xi^{\alpha\beta}(x))$ is a symmetric matrix, its eigenvalues are nonnegative, and we may order them as follows: $\lambda_1(x) \ge \lambda_2(x) \ge \cdots \ge \lambda_n(x) \ge 0$. F is said to be K-quasiconformal [5] if $\lambda_1(x) \le K^2 \lambda_n(x)$ for all $x \in M$.

We define polar coordinates (r, θ) on N via the exponential map. There will be two restrictions on the curvature of N:

(i) The sectional curvatures of N are bounded below by $-L^2 < 0$.

(ii) Each of the sectional curvatures at $(r, \theta) \in N$ determined by dr and some other tangent vector, is bounded above by K(r), where K(r) satisfies (a) for some $\epsilon > 0$, $-K(r) \sim r^{2\epsilon-2}$; (b) there exists a C^{∞} solution u(r) of the equation

 $u''(r) = K(r)u(r), \quad u(0) = 0, \quad u'(0) = 1,$

and u'(r) is always positive.

(Note that such a solution can always be found if K(r) is negative.)

THEOREM 1. Suppose M and N are as above with the curvature of N satisfying (i) and (ii). Then, if Brownian motion on M has trivial tail σ -field, every K-quasiconformal harmonic map $F: M \to N$ is constant.

© 1982 American Mathematical Society 0273-0979/82/0000-0261/\$02.25

Received by the editors January 26, 1982 and, in revised form, March 23, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 32H25, 53C21, 60J65.

¹ Queen's Quest Professor, Queen's University, Kingston, Canada.

² NSF Postdoctoral Fellow, University of Illinois, Urbana, 1979-1981.