BROWNIAN MOTION, GEOMETRY, AND GENERALIZATIONS OF PICARD'S LITTLE THEOREM

by S. I. Goldberg ${ }^{1}$ and c. MUeller ${ }^{2}$

Abstract

Brownian motion is introduced as a tool in Riemannian geometry, and it is shown to be useful in the function theory of manifolds, as well as in the study of maps between manifolds. As applications, a generalization of Picard's little theorem, and a version of it for Riemann surfaces of large genus are given.

1. Picard's theorem for nonhyperbolic manifolds. Let M and N be complete Riemannian manifolds with metrics ${ }^{M_{g}}{ }^{N_{g}}$, resp. Assume $F: M \rightarrow N$ is a C^{2} map. F is said to be harmonic [2] if its second fundamental form has trace 0 . Define the tensor

$$
\xi^{\alpha \beta}(x)=M_{g_{i j}}\left[\frac{\partial F^{\alpha}}{\partial x^{i}} \frac{\partial F^{\beta}}{\partial x^{j}}\right](x), x \in M .
$$

Since $\left(\xi^{\alpha \beta}(x)\right)$ is a symmetric matrix, its eigenvalues are nonnegative, and we may order them as follows: $\lambda_{1}(x) \geqslant \lambda_{2}(x) \geqslant \cdots \geqslant \lambda_{n}(x) \geqslant 0 . F$ is said to be $K-$ quasiconformal [5] if $\lambda_{1}(x) \leqslant K^{2} \lambda_{n}(x)$ for all $x \in M$.

We define polar coordinates (r, θ) on N via the exponential map. There will be two restrictions on the curvature of N :
(i) The sectional curvatures of N are bounded below by $-L^{2}<0$.
(ii) Each of the sectional curvatures at $(r, \theta) \in N$ determined by dr and some other tangent vector, is bounded above by $K(r)$, where $K(r)$ satisfies (a) for some $\epsilon>0,-K(r) \sim r^{2 \epsilon-2}$; (b) there exists a C^{∞} solution $u(r)$ of the equation

$$
u^{\prime \prime}(r)=K(r) u(r), \quad u(0)=0, \quad u^{\prime}(0)=1,
$$

and $u^{\prime}(r)$ is always positive.
(Note that such a solution can always be found if $K(r)$ is negative.)
Theorem 1. Suppose M and N are as above with the curvature of N satisfying (i) and (ii). Then, if Brownian motion on M has trivial tail σ-field, every K-quasiconformal harmonic map $F: M \rightarrow N$ is constant.

[^0]
[^0]: Received by the editors January 26, 1982 and, in revised form, March 23, 1982. 1980 Mathematics Subject Classification. Primary 32H25, 53C21, 60 J 65.
 1 Queen's Quest Professor, Queen's University, Kingston, Canada.
 2 NSF Postdoctoral Fellow, University of Illinois, Urbana, 1979-1981.

