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BROWNIAN MOTION, GEOMETRY, AND GENERALIZATIONS 

OF PICARD'S LITTLE THEOREM 

BY S. I. GOLDBERG1 AND C. MUELLER2 

ABSTRACT. Brownian motion is introduced as a tool in Riemannian geometry, 
and it is shown to be useful in the function theory of manifolds, as well as in 
the study of maps between manifolds. As applications, a generalization of 
Picard's little theorem, and a version of it for Riemann surfaces of large genus 
are given. 

1. Beard's theorem for nonhyperbolic manifolds. Let M and N be com
plete Riemannian manifolds with metrics Mg, Ngt resp. Assume F: M —• N is a 
C2 map. F is said to be harmonic [2] if its second fundamental form has trace 
0. Define the tensor 

Since (£*P(x)) is a symmetric matrix, its eigenvalues are nonnegative, and we may 
order them as follows: Xx(x) > X2(x) > • • • > \n(x) > 0. F is said to be K-
quasiconformal [5] if \x(x) < K2\n(x) for all x GM. 

We define polar coordinates (r, 0) on N via the exponential map. There 
will be two restrictions on the curvature of N: 

(i) The sectional curvatures of N are bounded below by -L2 < 0. 
(ii) Each of the sectional curvatures at (r, 6) EN determined by dr and 

some other tangent vector, is bounded above by K(r), where K(r) satisfies (a) 
for some e > 0, -K(f) ~ r2e~2 ; (b) there exists a C°° solution u(r) of the equa
tion 

u\r) = K(r)u(r), u(0) = 0, «'((»= 1, 

and u'(r) is always positive. 
(Note that such a solution can always be found if K(r) is negative.) 

THEOREM 1. Suppose M and N are as above with the curvature ofN satis
fying (i) and (ii). Then, if Brownian motion on M has trivial tail o-field, every 
K-quasiconformal harmonic map F: M —• N is constant. 
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