THE WHITEHEAD CONJECTURE AND SPLITTING $B(Z / 2)^{k}$

BY N. J. KUHN, S. A. MITCHELL AND S. B. PRIDDY ${ }^{\mathbf{1}}$

1. Introduction. In this note we present a circle of ideas with which the first author has proved G. Whitehead's conjecture concerning symmetric products of the sphere spectrum, i.e.

$$
i_{*}: \pi_{*} S P^{2} S^{0} \rightarrow \pi_{*} S P^{2 k+1} S^{0}
$$

is zero on the 2 -components in positive dimensions [Mi, Conjecture 84]. Equivalently, the natural sequence of spectra

$$
\cdots \rightarrow L(3) \xrightarrow{\delta_{2}} L(2) \xrightarrow{\delta_{1}} L(1) \xrightarrow{\delta_{0}} L(0) \rightarrow H \mathbf{Z},
$$

localized at 2 , is exact on homotopy groups. Here $H \mathbf{Z}$ is the integral EilenbergMac Lane spectrum, $L(0)=S^{0}$, and $L(k)=\Sigma^{-k} S P^{2 k} S^{0} / S P^{2 k-1} S^{0}$. Since $L(1)=\mathbf{R} P^{\infty}$ [JTTW], exactness at $L(0)$ is equivalent to the Kahn-Priddy theorem [KP].

In establishing this geometric resolution, it was found necessary to show that $L(k)$ is projective in an appropriate sense. Regarding suspension spectra as free objects, wedge summands of suspension spectra can be considered projective. The second and third authors have shown that $L(k)$ is projective by using the Steinberg idempotent [\mathbf{S}] for $\mathbf{F}_{2} G L_{k}\left(\mathbf{F}_{2}\right)$ to prove that $L(k)$ is a wedge summand in the suspension spectrum of $B(\mathbf{Z} / 2)^{k}=\mathbf{R} P^{\infty} \times \cdots \times \mathbf{R} P^{\infty}$.

It appears likely that our results also hold true for odd primes and tentative results have been obtained in this direction. Throughout this paper all spaces and spectra are localized at 2 and all cohomology groups are taken with $\mathbf{Z} / 2$ coefficients unless otherwise specified.

Details will appear elsewhere.
2. Symmetric products. If X is a space the symmetric product $S P^{k} X=$ X^{k} / Σ_{k} is the set of unordered k-tuples $\left\langle x_{1}, \ldots, x_{k}\right\rangle, x_{i} \in X$. For pointed X, $\left\langle x_{1}, \ldots, x_{k}\right\rangle \rightarrow\left\langle x_{1}, \ldots, x_{k}, *\right\rangle$ defines an inclusion $S P^{k} X \xrightarrow{i} S P^{k+1} X$. The limit $S P^{\infty} X$ satisfies $\pi_{*} S P^{\infty} X=\widetilde{H}_{*}(X ; \mathbf{Z})$ by the Dold-Thom theorem [DT]. There is also a natural pairing $S P^{k} X \wedge S P^{l} Y \xrightarrow{\wedge} S P^{k l}(X \wedge Y)$ defined by $\left\langle x_{1}, \ldots, x_{k}\right\rangle \wedge\left\langle y_{1}, \ldots, y_{l}\right\rangle \rightarrow\left\langle x_{1} \wedge y_{1}, \ldots, x_{i} \wedge y_{j}, \ldots, x_{k} \wedge y_{l}\right\rangle$. In particular $S^{1} \wedge S P^{k} Y \xrightarrow{\wedge} S P^{k}\left(S^{1} \wedge Y\right)$ and so the symmetric product construction passes to spectra. For the sphere spectrum, $S P^{\infty} S^{0}=H Z$. A mod 2

Received by the editors January 21, 1982.
1980 Mathematics Subject Classification. Primary 55P42, 55R35; Secondary 20C20.
${ }^{1}$ Partially supported by NSF grant MCS-7827592.

