ORTHOGONAL TRANSFORMATIONS FOR WHICH TOPOLOGICAL EQUIVALENCE IMPLIES LINEAR EQUIVALENCE

BY W.-C. HSIANG¹ AND WILLIAM PARDON²

Let $R_1, R_2 \in O(n)$, the group of orthogonal transformations of \mathbb{R}^n . We say R_1 and R_2 are topologically (resp. linearly) equivalent if there is a homeomorphism (resp. linear automorphism) $f: \mathbb{R}^n \to \mathbb{R}^n$ such that

(1)
$$f^{-1}R_1f = R_2 \colon \mathbf{R}^n \longrightarrow \mathbf{R}^n, \quad f(0) = 0$$

(Of course, linear equivalence of R_1 with R_2 is the same as equality of the respective sets of complex eigenvalues.) The *order* of an orthogonal transformation is its order as an element of O(n). The purpose of this note is to announce and discuss the proof of the following result [HP].

THEOREM A. Let $R_1, R_2 \in O(n)$ have order $k = l2^m$, where l is odd and $m \ge 0$. Suppose that

(a) R_1 and R_2 are topologically equivalent, and

(b) each eigenvalue of R_1^l and R_2^l is either 1 or a primitive 2^m th root of unity. Then R_1 and R_2 are linearly equivalent.

If G is a group and $\rho_1, \rho_2: G \to O(n)$ are orthogonal representations, we say ρ_1 and ρ_2 are topologically (resp. linearly) equivalent if there is a homeomorphism (resp. linear automorphism) $f: \mathbb{R}^n \to \mathbb{R}^n$, f(0) = 0, such that

(2)
$$f\rho_1(g)(x) = \rho_2(g)f(x),$$

for all $x \in \mathbb{R}^n$, $g \in G$. Here is an equivalent statement of Theorem A giving a more geometric description of its condition (b).

THEOREM B. Let $\rho_1, \rho_2: G \to O(n)$ be orthogonal representations of the finite group G such that $\rho_1 | H$ and $\rho_2 | H$ define semi-free actions of H on \mathbb{R}^n for each cyclic 2-subgroup H of G. If ρ_1 and ρ_2 are topologically equivalent, then they are linearly equivalent.

Returning to Theorem A, note that if k is odd, condition (b) may be omitted; in this case the result has been proved independently, using rather different methods, by Madsen and Rothenberg [MR]. If k is an odd prime power,

© 1982 American Mathematical Society 0273-0979/81/0000-0081/\$01.75

Received by the editors November 16, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 57C25; Secondary 57C10, 57E10. ¹Partially supported by NSF Grant GP 34324X1.

²Partially supported by NSF Grant MCS 78-02404.