ORTHOGONAL TRANSFORMATIONS FOR WHICH TOPOLOGICAL EQUIVALENCE IMPLIES LINEAR EQUIVALENCE

BY W.-C. HSIANG ${ }^{1}$ AND WILLIAM PARDON ${ }^{2}$

Let $R_{1}, R_{2} \in O(n)$, the group of orthogonal transformations of \mathbf{R}^{n}. We say R_{1} and R_{2} are topologically (resp. linearly) equivalent if there is a homeomorphism (resp. linear automorphism) $f: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{n}$ such that

$$
\begin{equation*}
f^{-1} R_{1} f=R_{2}: \mathbf{R}^{n} \longrightarrow \mathbf{R}^{n}, \quad f(0)=0 . \tag{1}
\end{equation*}
$$

(Of course, linear equivalence of R_{1} with R_{2} is the same as equality of the respective sets of complex eigenvalues.) The order of an orthogonal transformation is its order as an element of $O(n)$. The purpose of this note is to announce and discuss the proof of the following result [HP].

Theorem A. Let $R_{1}, R_{2} \in O(n)$ have order $k=l 2^{m}$, where l is odd and $m \geqslant 0$. Suppose that
(a) R_{1} and R_{2} are topologically equivalent, and
(b) each eigenvalue of R_{1}^{l} and R_{2}^{l} is either 1 or a primitive 2^{m} th root of unity. Then R_{1} and R_{2} are linearly equivalent.

If G is a group and $\rho_{1}, \rho_{2}: G \rightarrow O(n)$ are orthogonal representations, we say ρ_{1} and ρ_{2} are topologically (resp. linearly) equivalent if there is a homeomorphism (resp. linear automorphism) $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}, f(0)=0$, such that

$$
\begin{equation*}
f \rho_{1}(g)(x)=\rho_{2}(g) f(x), \tag{2}
\end{equation*}
$$

for all $x \in \mathbf{R}^{n}, g \in G$. Here is an equivalent statement of Theorem A giving a more geometric description of its condition (b).

Theorem B. Let $\rho_{1}, \rho_{2}: G \longrightarrow O(n)$ be orthogonal representations of the finite group G such that $\rho_{1} \mid H$ and $\rho_{2} \mid H$ define semi-free actions of H on \mathbf{R}^{n} for each cyclic 2 -subgroup H of G. If ρ_{1} and ρ_{2} are topologically equivalent, then they are linearly equivalent.

Returning to Theorem A, note that if k is odd, condition (b) may be omitted; in this case the result has been proved independently, using rather different methods, by Madsen and Rothenberg [MR]. If k is an odd prime power,

[^0]
[^0]: Received by the editors November 16, 1981.
 1980 Mathematics Subject Classification. Primary 57C25; Secondary 57C10, 57E10.
 ${ }^{1}$ Partially supported by NSF Grant GP 34324X1.
 ${ }^{2}$ Partially supported by NSF Grant MCS 78-02404.

