ÉTALE K-THEORY AND ARITHMETIC

BY WILLIAM G. DWYER AND ERIC M. FRIEDLANDER ${ }^{1}$

The purpose of this note is to announce some new results about the algebraic K-theory of rings of integers in global fields.

Theorem 1. Let 0 denote the ring of integers in a number field K (i.e. a finite extension field of the rational numbers \mathbf{Q}) and let l be an odd prime. Then there are natural surjective maps

$$
\begin{equation*}
\mathrm{ch}_{i, k}: K_{2 i-k}(0) \otimes \mathbf{Z}_{l} \rightarrow H^{k}\left(0[1 / l], \mathbf{Z}_{l}(i)\right), \quad k=1 \text { or } 2,2 i-k>1 \tag{1.1}
\end{equation*}
$$

Remark. The requirement that l be an odd prime can be dropped if K is totally imaginary.

The groups on the right of (1.1) are continuous l-adic étale cohomology groups. Recall that $\mathbf{Z} / l^{\nu}(1)$ denotes the sheaf of l^{v} th roots of unity, $\mathbf{Z} / l^{v}(i)=$ $\left(\mathbf{Z} / l^{v}(1)\right)^{\otimes i}$, and $\mathbf{Z}_{l}(i)=\lim _{\leftrightarrows} \mathbf{Z} / l^{v}(i)$. D. Quillen has conjectured the existence of isomorphisms of type (1.1). B. Harris and G. Segal [4] have shown that (1.1) is surjective on torsion if $k=1$; C. Soulé [6] in many cases proved surjectivity for $k=2$ with $i<l$.

The surjectivity of (1.1) together with A. Borel's computation of $K_{*}(0) \otimes$ Q [1] gives a new proof of the existence [7] of isomorphisms

$$
\begin{equation*}
\mathrm{ch}_{i, k} \otimes \mathbf{Q}: K_{2 i-k}(0) \otimes \mathbf{Q}_{l} \xrightarrow{\sim} H^{k}\left(0[1 / l], \mathbf{Q}_{l}(i)\right) . \tag{1.2}
\end{equation*}
$$

In particular, Theorem 1 implies that $\mathrm{ch}_{i, 1}$ detects "Borel classes" in $K_{2 i-1}(0)$ (i.e. basis elements for $K_{2 i-1}(0) /$ torsion). This leads to the following corollary, which is consistent with long-standing conjectures about the algebraic K-theory with finite coefficients of the algebraic closure of \mathbf{Q}.

Corollary 2. For any integers $i \geqslant 1$ and $v>0$ there exists a finite solvable field extension K^{\prime} of K with ring of integers 0^{\prime} such that the image of $K_{2 i-1}(0) /$ torsion in $K_{2 i-1}\left(0^{\prime}\right) /$ torsion is divisible by l^{ν}.

Conjectures by S. Lichtenbaum [5] and work by Lichtenbaum and others relate the values of the Dedekind zeta function of K at negative integers to the number of elements of finite order in the groups $H^{k}\left(O[1 / l], \mathbf{Z}_{l}(i)\right)$. For example, combining (1) with known properties of Bernoulli numbers gives the new result that $K_{134}(\mathrm{Z})$ contains an element of order 37.

Received by the editors November 12, 1981 and, in revised form, January 4, 1982. 1980 Mathematics Subject Classification. Primary 18F25; Secondary 12A60, 55N15. ${ }^{1}$ Research partially supported by the N. S. F.

