A COMPUTER-ASSISTED PROOF OF THE FEIGENBAUM CONJECTURES

BY OSCAR E. LANFORD III¹

1. Introduction. Let M denote the space of continuously differentiable even mappings ψ of the interval [-1, 1] into itself such that

M1. $\psi(0) = 1$,

M2. $x\psi'(x) < 0$ for $x \neq 0$.

M2 says that ψ is strictly increasing on [-1, 0) and strictly decreasing on (0, 1], so M is a space of mappings which are unimodal in a strict sense.

Condition M1 says that the unique critical point 0 is mapped to 1. We want to consider ψ 's which map 1 slightly – but not too far – to the left of 0. It may then be possible to find nonoverlapping intervals I_0 about 0 and I_1 near 1 which are exchanged by ψ . Technically, we proceed as follows: Write *a* for $-\psi(1) =$ $-\psi^2(0)$ and *b* for $\psi(a)$; we suppress from the notation the dependence of *a* and *b* on ψ . Define $\mathcal{D}(\mathcal{T})$ to be the set of all ψ 's in *M* such that:

- D1. a > 0,
- D2. b > a,
- D3. $\psi(b) \leq a$.

The two intervals $I_0 = [-a, a]$ and $I_1 = [b, 1]$ are then nonoverlapping and ψ maps I_0 into I_1 and vice versa. If $\psi \in \mathcal{D}(T)$, then $\psi \circ \psi|_{I_0}$ has a single critical point, which is a minimum. By making the change of variables $x \to -ax$, we replace I_0 by [-1, 1] and the minimum by a maximum, i.e., if we define

$$T\psi(x) = -\frac{1}{a}\psi \circ \psi(-ax) \text{ for } x \in [-1, 1]$$

then $T\psi$ is again in M. Thus, T defines a mapping of $\mathcal{D}(T)$ into M. (In general, $T\psi$ need not lie in $\mathcal{D}(T)$. If *a* is small, then $T\psi(1)$ will be approximately 1 so $T\psi$ will not satisfy D1. On the other hand, if $\psi(b)$ is near *a*, then $T\psi(1)$ will be near -1 from which it follows that $T\psi$ does not satisfy D2.)

M. Feigenbaum [6] has proposed an explanation for some universal features displayed by infinite sequences of period doubling bifurcations based on some conjectures about \mathcal{T} . We will not review has argument here; a version with due regard for mathematical technicalities may be found in Collet and Eckmann [3],

 $^{\odot}$ 1982 American Mathematical Society 0273-0979/81/0000-0086/\$03.00

Received by the editors October 27, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 58F14.

¹The author gratefully acknowledges the financial support of the Stiftung Volkswagenwerk for a visit to the IHES during which this paper was written, and the continuing financial support of the National Science Foundation (Grant MCS 78-06718).