A COMPUTER-ASSISTED PROOF OF THE FEIGENBAUM CONJECTURES

BY OSCAR E. LANFORD III ${ }^{1}$

1. Introduction. Let M denote the space of continuously differentiable even mappings ψ of the interval $[-1,1]$ into itself such that

M1. $\psi(0)=1$,
M2. $x \psi^{\prime}(x)<0 \quad$ for $x \neq 0$.
M2 says that ψ is strictly increasing on $[-1,0)$ and strictly decreasing on $(0,1]$, so M is a space of mappings which are unimodal in a strict sense.

Condition M1 says that the unique critical point 0 is mapped to 1 . We want to consider ψ 's which map 1 slightly - but not too far - to the left of 0 . It may then be possible to find nonoverlapping intervals I_{0} about 0 and I_{1} near 1 which are exchanged by ψ. Technically, we proceed as follows: Write a for $-\psi(1)=$ $-\psi^{2}(0)$ and b for $\psi(a)$; we suppress from the notation the dependence of a and b on ψ. Define $\mathcal{D}(T)$ to be the set of all ψ 's in M such that:

D1. $a>0$,
D2. $b>a$,
D3. $\psi(b) \leqslant a$.
The two intervals $I_{0}=[-a, a]$ and $I_{1}=[b, 1]$ are then nonoverlapping and ψ maps I_{0} into I_{1} and vice versa. If $\psi \in \mathcal{D}(T)$, then $\left.\psi \circ \psi\right|_{I_{0}}$ has a single critical point, which is a minimum. By making the change of variables $x \rightarrow-a x$, we replace I_{0} by $[-1,1]$ and the minimum by a maximum, i.e., if we define

$$
T \psi(x)=-\frac{1}{a} \psi \circ \psi(-a x) \text { for } x \in[-1,1]
$$

then $T \psi$ is again in M. Thus, T defines a mapping of $D(T)$ into M. (In general, $T \psi$ need not lie in $\mathcal{D}(T)$. If a is small, then $T \psi(1)$ will be approximately 1 so $T \psi$ will not satisfy D1. On the other hand, if $\psi(b)$ is near a, then $T \psi(1)$ will be near -1 from which it follows that $T \psi$ does not satisfy D2.)
M. Feigenbaum [6] has proposed an explanation for some universal features displayed by infinite sequences of period doubling bifurcations based on some conjectures about T. We will not review has argument here; a version with due regard for mathematical technicalities may be found in Collet and Eckmann [3],

[^0]
[^0]: Received by the editors October 27, 1981.
 1980 Mathematics Subject Classification. Primary 58 F14.
 ${ }^{1}$ The author gratefully acknowledges the financial support of the Stiftung Volkswagenwerk for a visit to the IHES during which this paper was written, and the continuing financial support of the National Science Foundation (Grant MCS 78-06718).

