THE CLOSURE OF THE SIMILARITY ORBIT OF A HILBERT SPACE OPERATOR

BY CONSTANTIN APOSTOL, DOMINGO A. HERRERO AND DAN VOICULESCU

1. Introduction. Let H be a complex separable infinite-dimensional Hilbert space and let L(H) be the algebra of all (bounded linear) operators acting on H. The similarity orbit of $T \in L(H)$ is the subset

 $S(T) = \{WTW^{-1} : W \in L(H) \text{ is invertible}\}.$

The purpose of this note is to announce the "almost complete" solution of the problem of characterizing the (norm) closure $S(T)^-$ of S(T) in simple terms. Our results reduce the whole problem to the analysis of a very peculiar class of nilpotent operators and their compact perturbations. Complete results will appear elsewhere.

2. The main result. Assume that $A \in S(T)^-$, i.e., $||A - W_n T W_n^{-1}|| \to 0$ $(n \to \infty)$ for a suitable sequence $\{W_n\}_{n=1}^{\infty}$ of invertible operators. Since the spectrum of every operator in the sequence $\{W_n T W_n^{-1}\}_{n=1}^{\infty}$ coincides with the spectrum $\sigma(T)$ of T and, moreover, every single piece of $\sigma(W_n T W_n^{-1})$ (essential spectrum, left or right essential spectrum, normal eigenvalues, etc.) coincides with the corresponding piece of $\sigma(T)$, it is not difficult to see, by using the upper semicontinuity of separate parts of the spectrum (see, e.g., [5, Theorem 3.16]) that A necessarily satisfies

(0) $\sigma(A) \supset \sigma(T)$ and each component of $\sigma(A)$ intersects $\sigma(T)$.

Furthermore, if f is an analytic function defined on a neighborhood of $\sigma(A)$ and we define f(A) via Riesz-Dunford functional calculus, then it is easily seen that $||f(A) - f(W_n T W_n^{-1})|| \rightarrow 0 \ (n \rightarrow \infty)$. If σ is a clopen subset of $\sigma(A)$, $f(\lambda) \equiv 1$ on a neighborhood of σ and $f(\lambda) \equiv 0$ on a neighborhood of $\sigma(A) \setminus \sigma$, then $P(\sigma; A) = f(A)$ is the Riesz' idempotent corresponding to σ [6, Chapter XIV]. Recall that $\lambda \in \sigma(A)$ is a normal eigenvalue if λ is an isolated point of $\sigma(A)$ and $\lambda \notin \sigma_e(A)$; equivalently: λ is an isolated point of $\sigma(A)$ and $P(\{\lambda\}; A)$ is a finite rank operator. (The set of all normal eigenvalues of A will be denoted by $\sigma_0(A)$.)

The continuity properties of the functional calculus imply that

(i) If $\lambda \in \sigma_0(A)$, then rank $P(\{\lambda\}; A) = \operatorname{rank} P(\{\lambda\}; T)$.

© 1982 American Mathematical Society 0273-0979/81/0000-0083/\$02.50

Received by the editors May 4, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47A66, 47A99; Secondary 47A53, 47A55.