RESEARCH ANNOUNCEMENTS

ON K_3 AND K_4 OF THE INTEGERS MOD n

BY JANET AISBETT

Quillen [7] defines an algebraic K-functor from the category of associative rings to that of positively graded abelian groups, with $K_i(R) = \prod_i (BGLR^+)$ for $i \ge 1$. K_1 and K_2 correspond respectively to the 'classical' Bass and Milnor definitions. The K-images of finite fields and their algebraic closures were computed by Quillen in [8]. Since then, there has been only a handful of complete calculations of any of the higher K-groups (K_i for $i \ge 2$). Lee and Szczarba [4] showed that the Karoubi subgroup Z/48 of $K_3(Z)$ was the full group. Evens and Friedlander [3] computed $K_i(Z/p^2)$ and $K_i(\mathbf{F}_p[t]/(t^2))$ for i < 5 and prime p greater than 3. Snaith in [1] and, with Lluis, in [5], fully determined $K_3(\mathbf{F}_{pm}[t]/(t^2))$ for $m \ge 1$ and prime p other than 3.

This note summarizes computations of the groups $K_3(Z/n)$, and $K_4(Z/p^k)$ for k > 1 and prime p > 3. These complete the recent partial results on $K_3(Z/4)$ by Snaith and on $K_3(Z/9)$ by Lluis, and extend the work of Evens and Friedlander. The theorem stated below is consistent with the Karoubi conjecture that for odd primes, $BGLZ/p^{k+}$ is the homotopy fibre of the difference of Adams operations, $\Psi^{pk} - \Psi^{pk-1}$. However, Priddy [6] has disproved the conjecture in the cases p > 3 and k = 2.

I am most grateful to Victor Snaith for his supervision of the thesis in which these results originally appeared. Details of the proofs can also be found in [1].

THEOREM. Take k > 1 and $0 < i \le 2$.

(a) $K_{2i-1}(Z/2^k) = Z/2^i \oplus Z/2^{i(k-2)} \oplus Z/(2^i - 1)$. $K_{2i-1}(Z/p^k) = Z/p^{i(k-1)} \oplus Z/(p^i - 1)$ if p is an odd prime. For all primes, the map

$$K_{2i-1}(Z/p^{k+1}) \longrightarrow K_{2i-1}(Z/p^k)$$

induced by reduction is the obvious surjection.

(b) For prime p > 3, $K_{2i}(Z/p^k) = 0$. $K_2(Z/3^k) = 0$. $K_2(Z/2^k) = Z/2$.

 K_1 is due to Bass, K_2 to Milnor, Dennis Stein.

Received by the editors November 29, 1981.

© 1982 American Mathematical Society 0273-0979/81/0000-0082/\$01.75

¹⁹⁸⁰ Mathematics Subject Classification. Primary 18F25, 20G10, 20J06; Secondary 18G40, 18G35.