RESEARCH ANNOUNCEMENTS

ON K_{3} AND K_{4} OF THE INTEGERS MOD n
BY JANET AISBETT

Quillen [7] defines an algebraic K-functor from the category of associative rings to that of positively graded abelian groups, with $K_{i}(R)=\Pi_{i}\left(\mathrm{BGLR}^{+}\right)$for $i \geqslant 1$. K_{1} and K_{2} correspond respectively to the 'classical' Bass and Milnor definitions. The K-images of finite fields and their algebraic closures were computed by Quillen in [8]. Since then, there has been only a handful of complete calculations of any of the higher K-groups (K_{i} for $i>2$). Lee and Szczarba [4] showed that the Karoubi subgroup $Z / 48$ of $K_{3}(Z)$ was the full group. Evens and Friedlander [3] computed $K_{i}\left(Z / p^{2}\right)$ and $K_{i}\left(\mathrm{~F}_{p}[t] /\left(t^{2}\right)\right)$ for $i<5$ and prime p greater than 3. Snaith in [1] and, with Lluis, in [5], fully determined $K_{3}\left(\mathrm{~F}_{p^{m}}[t] /\left(t^{2}\right)\right)$ for $m \geqslant 1$ and prime p other than 3.

This note summarizes computations of the groups $K_{3}(Z / n)$, and $K_{4}\left(Z / p^{k}\right)$ for $k>1$ and prime $p>3$. These complete the recent partial results on $K_{3}(Z / 4)$ by Snaith and on $K_{3}(Z / 9)$ by Lluis, and extend the work of Evens and Friedlander. The theorem stated below is consistent with the Karoubi conjecture that for odd primes, BGL Z / p^{k+} is the homotopy fibre of the difference of Adams operations, $\Psi^{p^{k}}-\Psi^{p^{k-1}}$. However, Priddy [6] has disproved the conjecture in the cases $p>3$ and $k=2$.

I am most grateful to Victor Snaith for his supervision of the thesis in which these results originally appeared. Details of the proofs can also be found in [1].

Theorem. Take $k>1$ and $0<i \leqslant 2$.
(a) $K_{2 i-1}\left(Z / 2^{k}\right)=Z / 2^{i} \oplus Z / 2^{i(k-2)} \oplus Z /\left(2^{i}-1\right) . K_{2 i-1}\left(Z / p^{k}\right)=$ $Z / p^{i(k-1)} \oplus Z /\left(p^{i}-1\right)$ if p is an odd prime. For all primes, the map

$$
K_{2 i-1}\left(Z / p^{k+1}\right) \longrightarrow K_{2 i-1}\left(Z / p^{k}\right)
$$

induced by reduction is the obvious surjection.
(b) For prime $p>3, K_{2 i}\left(Z / p^{k}\right)=0 . K_{2}\left(Z / 3^{k}\right)=0 . K_{2}\left(Z / 2^{k}\right)=Z / 2$.
K_{1} is due to Bass, K_{2} to Milnor, Dennis Stein.

[^0]
[^0]: Received by the editors November 29, 1981.
 1980 Mathematics Subject Classification. Primary 18F25, 20G10, 20J06; Secondary 18G40, 18 G 35 .

