THE UNDECIDABILITY OF THE RECURSIVELY ENUMERABLE DEGREES

BY LEO HARRINGTON AND SAHARON SHELAH ${ }^{1}$
Let \leqslant be Turing reducibility between subsets of ω and let R be the collection of all recursively enumerable subsets of ω. For A in R, \mathbf{A} is the Turing degree of A; and $\mathrm{R}=\{\mathbf{A} ; A$ is in R$\}$. (See [2] for any unexplained notions or notation used above, or below). We also identify R with the structure $\langle R, \leqslant\rangle$.

We wish to announce the result
Theorem. The first order theory of R is undecidable.
To prove this we show that the theory of partial orderings is reducible to the theory of R, as follows.

Recall, R is an upper-semi-lattice; thus for a, b in R, their join $a \vee b$ is in R.
Lemma. For Pa partial ordering recursive in (say) 0^{\prime}, there are a, b_{p} $(p \in P), c, d, e$ in R such that
(i) $b_{p} \leqslant a$,
(ii) $a \leqslant\left(b_{p} \vee C\right)$,
(iii) for each $Z \leqslant a$, either
(α) $a \leqslant(Z \vee c)$, or $\exists p \in P$ such that
$(\beta)_{p} Z \leqslant\left(b_{p} \vee d\right)$,
(iv) for $p \neq q, b_{p} \nless\left(b_{q} \vee d\right)$,
(\sim) for p, q in $P, p \leqslant q$ iff $b_{p} \leqslant\left(b_{q} \vee d \vee e\right)$.
Now, for a, b, c, d in R let $\phi(a, b, c, d) \equiv(b \leqslant a)$ and $(a \nless(b \vee c))$ and $(\neg E Z(Z \leqslant a$ and $a \nless(Z \vee c)$ and $(Z \vee d)>(b \vee d)))$. For a, c, d, e in R, let $Q(a, c, d, e)=\{b \vee d \vee e ; R \vDash \phi(a, b, c, d)\}$. For a, c, d, e as in the lemma, $Q(a, c, d, e)=\left\{b_{p} \vee d \vee e ; p \in P\right\}$, and $\langle Q(a, c, d, e), \leqslant\rangle$ is isomorphic to P.

Thus for ψ a sentence of the language of partial orderings: ψ is true of some partial ordering iff (by the usual proof of the completeness theorem) $P \vDash \psi$ for some P recursive in 0^{\prime} iff (by the lemma) $\exists a, c, d, e$ in R $(\langle Q(a, c, d, e), \leqslant\rangle \vDash \psi)$.

The lemma is proven, of course, by a priority argument. The type of priority argument used can best be described as an infinite injury argument with a finite injury priority argument on top of it. This kind of construction was first

[^0]
[^0]: Received by the editors February 3, 1981.
 AMS (MOS) subject classifications (1970). Primary 02F25, 02F30.
 1 The authors were supported by the NSF.

