THE UNDECIDABILITY OF THE RECURSIVELY ENUMERABLE DEGREES

BY LEO HARRINGTON AND SAHARON SHELAH¹

Let \leq be Turing reducibility between subsets of ω and let R be the collection of all recursively enumerable subsets of ω . For A in R, A is the Turing degree of A; and $R = \{A; A \text{ is in } R\}$. (See [2] for any unexplained notions or notation used above, or below). We also identify R with the structure $\langle R, \leq \rangle$.

We wish to announce the result

THEOREM. The first order theory of **R** is undecidable.

To prove this we show that the theory of partial orderings is reducible to the theory of R, as follows.

Recall, R is an upper-semi-lattice; thus for a, b in R, their join $a \vee b$ is in R.

LEMMA. For P a partial ordering recursive in (say) 0', there are a, b_p ($p \in P$), c, d, e in R such that

(i) $b_p \leq a$, (ii) $a \leq (b_p \lor C)$, (iii) for each $Z \leq a$, either (α) $a \leq (Z \lor c)$, or $\exists p \in P$ such that (β)_p $Z \leq (b_p \lor d)$, (iv) for $p \neq q$, $b_p \leq (b_q \lor d)$, (\sim) for p, q in P, p $\leq q$ iff $b_p \leq (b_q \lor d \lor e)$.

Now, for a, b, c, d in R let $\phi(a, b, c, d) \equiv (b \leq a)$ and $(a \leq (b \lor c))$ and $(\neg EZ \ (Z \leq a \text{ and } a \leq (Z \lor c) \text{ and } (Z \lor d) > (b \lor d)))$. For a, c, d, e in R, let $Q(a, c, d, e) = \{b \lor d \lor e; R \models \phi(a, b, c, d)\}$. For a, c, d, e as in the lemma, $Q(a, c, d, e) = \{b_p \lor d \lor e; p \in P\}$, and $\langle Q(a, c, d, e), \leq \rangle$ is isomorphic to P.

Thus for ψ a sentence of the language of partial orderings: ψ is true of some partial ordering iff (by the usual proof of the completeness theorem) $P \models \psi$ for some P recursive in 0' iff (by the lemma) $\exists a, c, d, e$ in R ($\langle Q(a, c, d, e), \leqslant \rangle \models \psi$).

The lemma is proven, of course, by a priority argument. The type of priority argument used can best be described as an infinite injury argument with a finite injury priority argument on top of it. This kind of construction was first

© 1982 American Mathematical Society 0002-9904/82/0000-0240/\$01.50

Received by the editors February 3, 1981.

AMS (MOS) subject classifications (1970). Primary 02F25, 02F30.

¹ The authors were supported by the NSF.