BOOK REVIEWS

- Inequalities: Theory of majorization and its applications, by Albert W. Marshall and Ingram Olkin, Mathematics in Science and Engineering, Vol. 143, Academic Press, New York, 1979, xx + 569 pp., \$49.50.
- Probability inequalities in multivariate distributions, by Y. L. Tong, Probability and Mathematical Statistics, A Series of Monographs and Textbooks, Academic Press, New York, 1980, xiii + 239 pp., \$ 29.50.

Both monographs make extensive use of a (quasi) partial ordering of \mathbb{R}^n called majorization and the corresponding class of (Schur) increasing functions on \mathbb{R}^n . In this connection, it is best to think of $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ as representing the measure μ on the reals \mathbb{R} of total mass n which is defined by $\mu(A) = \sum_{x_i \in A} 1$. Let ν denote the analogous measure represented by the point $y \in \mathbb{R}^n$. One says that x is majorized by y and also that $x \prec y$ or that y is a dilation of x when

(1)
$$\sum_{i=1}^{n} f(x_i) = \int f \, d\mu \leq \int f \, d\nu = \sum_{i=1}^{n} f(y_i)$$

holds for each convex function f on R. It implies that μ and ν have the same mass and the same centre of gravity. A necessary and sufficient condition is that

(2)
$$\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]} \text{ for } k = 1, 2, \dots, n,$$

insisting that the equality sign holds when k = n. Here, $x_{[1]} > \cdots > x_{[n]}$ are the x_i arranged in decreasing order and, similarly, $y_{[1]} > \cdots > y_{[n]}$. If (1) is only required for the increasing (decreasing) convex functions on R then one speaks of weak sub-majorization $x \prec_w y$ (or weak super-majorization $x \prec^w y$, respectively). The first is equivalent to (2).

Let \mathscr{Q} be an open convex subset of \mathbb{R}^n which is symmetric, that is, invariant under each permutation of the coordinates. A function $\phi: \mathscr{Q} \to \mathbb{R}$ is said to be Schur increasing (or Schur convex) if it is nondecreasing relative to the partial ordering $x \prec y$ of \mathscr{Q} ; similarly for Schur decreasing functions, also called Schur concave functions. A Schur increasing function is always symmetric. An obvious example would be

(3)
$$\phi(x) = \phi(x_1, \ldots, x_n) = \sum_{i=1}^n f(x_i),$$

with $f: \mathbb{R} \to \mathbb{R}$ a convex function. More generally, every symmetric and convex (concave) function on \mathscr{R} is Schur convex (Schur concave). A symmetric C^1 function ϕ on \mathscr{R} is Schur increasing if and only if $\phi_{(i)}(x) - \phi_{(j)}(x)$ is