RESEARCH ANNOUNCEMENTS

SPECTRAL PROPERTIES OF SOME NONSELFADJOINT OPERATORS ${ }^{1}$

BY A. G. RAMM

Abstract

Let A be a compact linear operator on a Hilbert space $H, s_{n}(A)=$ $\left\{\lambda_{n}\left(A^{*} A\right)\right\}^{1 / 2}, Q$ be a compact linear operator, $I+Q$ be invertible, $B=A(I+Q)$. We prove that $s_{n}(B) s_{n}^{-1}(A) \rightarrow 1$ as $n \rightarrow \infty$. If $|Q f| \leqslant c|A f|^{a}|f|^{1-a}, a>0, c>0$, $f \in H$ and $s_{n}(A)=c_{1} n^{-r}\left\{1+O\left(n^{-q}\right)\right\} r, q>0$, then $s_{n}(B)=s_{n}(A)\left\{1+O\left(n^{-\gamma}\right)\right\}$, where $\gamma=\min \left\{q, r a(1+r a)^{-1}\right\}$. This estimate is close to sharp. We also give conditions sufficient for the root system of B to form a Riesz basis with brackets of H. Applications to elliptic boundary value problems are given.

1. Notations, definitions. Let H be a separable Hilbert space, A and Q be compact linear operators on $H, B=A(I+Q), \lambda_{n}(A)$ be the eigenvalues of A, $s_{n}(A)=\lambda_{n}\left\{\left(A^{*} A\right)^{1 / 2}\right\}=\left\{\lambda_{n}\left(A^{*} A\right)\right\}^{1 / 2}$ be the s-values of A (singular values of A), c be various positive constants, \mathbf{R}^{d} be the Euclidean d-dimensional space, $D \subset$ \mathbf{R}^{d} be a bounded domain with a smooth boundary, L be a positive definite in $L^{2}(D)$ elliptic operator of order l and M be a nonselfadjoint differential operator of order $m<l$. We define $s_{n}(L)=\left\{s_{n}\left(L^{-1}\right)\right\}^{-1}$. Let $A \phi=\lambda \phi, \phi \neq 0$. With the pair (λ, ϕ) one associates the Jordan chain defined as follows: consider (*) $A \phi^{(1)}-\lambda \phi^{(1)}=\phi$. If this equation is not solvable then one says that there are no root vectors associated with the pair (λ, ϕ). If $(*)$ is solvable then consider the equations $(* *) A \phi^{(j)}-\lambda \phi^{(j)}=\phi^{(j-1)}, j=1,2, \ldots, \phi^{(0)} \equiv \phi$. It is known [1], that if A is compact then there exists an integer N such that (**) will not be solvable for $j>N$. In this case vectors $\phi^{(1)}, \ldots, \phi^{(N)}$ are called the root vectors associated with the pair $(\lambda, \phi),\left(\phi, \phi^{(1)}, \ldots, \phi^{(N)}\right)$ is called the Jordan chain associated with the pair (λ, ϕ). Consider the eigenvectors ϕ_{1}, \ldots, ϕ_{q} corresponding to the eigenvalue λ and all the root vectors associated with the pairs $\left(\lambda, \phi_{p}\right), p=1, \ldots, q$. The linear span of the eigen and root vectors corresponding to λ is called the root space corresponding to λ. The collection of all eigen and root vectors of A is called its root system. Let us define Riesz's basis of H with brackets. Let $\left\{f_{j}\right\}$ be a linearly independent system of elements of $H,\left\{h_{j}\right\}$ be an orthonormal basis of H, and $m_{1}<m_{2}<\cdots<m_{j} \rightarrow \infty$ be a
[^0]
[^0]: Received by the editors February 11, 1981 and, in revised form, April 13, 1981. 1980 Mathematics Subject Classification. Primary 47A55, 47A10, 35P20.
 ${ }^{1}$ Supported by AFOSR 800204.

