RESEARCH ANNOUNCEMENTS

SPECTRAL PROPERTIES OF SOME NONSELFADJOINT OPERATORS¹

BY A. G. RAMM

ABSTRACT. Let A be a compact linear operator on a Hilbert space H, $s_n(A) = \{\lambda_n(A^*A)\}^{\frac{1}{2}}$, Q be a compact linear operator, I + Q be invertible, B = A(I + Q). We prove that $s_n(B)s_n^{-1}(A) \to 1$ as $n \to \infty$. If $|Qf| \le c|Af|^{q}|f|^{1-a}$, a > 0, c > 0, $f \in H$ and $s_n(A) = c_1 n^{-r} \{1 + O(n^{-q})\}r$, q > 0, then $s_n(B) = s_n(A) \{1 + O(n^{-\gamma})\}$, where $\gamma = \min\{q, ra(1 + ra)^{-1}\}$. This estimate is close to sharp. We also give conditions sufficient for the root system of B to form a Riesz basis with brackets of H. Applications to elliptic boundary value problems are given.

1. Notations, definitions. Let H be a separable Hilbert space, A and Q be compact linear operators on H, B = A(I + Q), $\lambda_n(A)$ be the eigenvalues of A, $s_n(A) = \lambda_n \{ (A^*A)^{\frac{1}{2}} \} = \{\lambda_n(A^*A)\}^{\frac{1}{2}}$ be the s-values of A (singular values of A), c be various positive constants, \mathbf{R}^d be the Euclidean d-dimensional space, $D \subset$ \mathbf{R}^d be a bounded domain with a smooth boundary, L be a positive definite in $L^{2}(D)$ elliptic operator of order l and M be a nonselfadjoint differential operator of order m < l. We define $s_n(L) = \{s_n(L^{-1})\}^{-1}$. Let $A\phi = \lambda\phi, \phi \neq 0$. With the pair (λ, ϕ) one associates the Jordan chain defined as follows: consider (*) $A\phi^{(1)} - \lambda\phi^{(1)} = \phi$. If this equation is not solvable then one says that there are no root vectors associated with the pair (λ, ϕ) . If (*) is solvable then consider the equations (**) $A\phi^{(j)} - \lambda\phi^{(j)} = \phi^{(j-1)}, j = 1, 2, ..., \phi^{(0)} \equiv \phi$. It is known [1], that if A is compact then there exists an integer N such that (**)will not be solvable for j > N. In this case vectors $\phi^{(1)}, \ldots, \phi^{(N)}$ are called the root vectors associated with the pair $(\lambda, \phi), (\phi, \phi^{(1)}, \ldots, \phi^{(N)})$ is called the Jordan chain associated with the pair (λ, ϕ) . Consider the eigenvectors ϕ_1, \ldots, ϕ_n ϕ_{α} corresponding to the eigenvalue λ and all the root vectors associated with the pairs $(\lambda, \phi_p), p = 1, \ldots, q$. The linear span of the eigen and root vectors corresponding to λ is called the root space corresponding to λ . The collection of all eigen and root vectors of A is called its root system. Let us define Riesz's basis of H with brackets. Let $\{f_i\}$ be a linearly independent system of elements of H, $\{h_i\}$ be an orthonormal basis of H, and $m_1 < m_2 < \cdots < m_i \rightarrow \infty$ be a

Received by the editors February 11, 1981 and, in revised form, April 13, 1981. 1980 Mathematics Subject Classification, Primary 47A55, 47A10, 35P20.

¹Supported by AFOSR 800204.

^{© 1981} American Mathematical Society 0002-9904/81/0000-0503/\$01.75