ON DEFINING RELATIONS OF CERTAIN INFINITE-DIMENSIONAL LIE ALGEBRAS¹

BY OFER GABBER AND VICTOR G. KAC

ABSTRACT. In this note we prove a conjecture stated in [2] about defining relations of the so-called Kac-Moody Lie algebras. In the finite-dimensional case this is Serre's theorem [5]. The basic idea is to map the ideal of relations into a Verma module and then to use the (generalized) Casimir operator (cf. [3, 4]).

1. The main statements. Let $A = (a_{ij})$ be an $n \times n$ matrix over a field F. Denote by $\widetilde{\mathfrak{g}}(A)$ the Lie algebra over F with 3n generators $e_i, f_i, h_i, i \in I = \{1, \ldots, n\}$ and the following defining relations $(i, j \in I)$:

(1)
$$[e_i, f_j] - \delta_{ij}h_i, [h_i, h_j], [h_i, e_j] - a_{ij}e_j, [h_i, f_j] + a_{ij}f_j.$$

Set $\Gamma = \mathbb{Z}^n$, $\Gamma_+ = \{(k_1, \ldots, k_n) \in \Gamma | k_i \ge 0\} \setminus \{0\}$ and let $\Pi = \{\alpha_1, \ldots, \alpha_n\}$ be the standard basis of Γ . Setting deg $e_i = -\deg f_i = \alpha_i$ for $i \in I$ defines a Γ -gradation $\widetilde{\mathfrak{g}}(A) = \bigoplus_{\alpha \in \Gamma} \widetilde{\mathfrak{g}}_{\alpha}$. Let $\widetilde{\mathfrak{n}}_{\pm} = \bigoplus_{\alpha \in \Gamma_+} \widetilde{\mathfrak{g}}_{\pm \alpha}$ and $\mathfrak{h} = \widetilde{\mathfrak{g}}_0$. Then $\widetilde{\mathfrak{n}}_+$ and $\widetilde{\mathfrak{n}}_-$ are free Lie algebras over F with systems of free generators e_1, \ldots, e_n and f_1, \ldots, f_n , respectively, and $\widetilde{\mathfrak{g}}(A) = \widetilde{\mathfrak{n}}_- \oplus \mathfrak{h} \oplus \widetilde{\mathfrak{n}}_+$ (direct sum of vector spaces), so that $\widetilde{\mathfrak{g}}_{\alpha_i} = Fe_i$, $\mathfrak{g}_{-\alpha_i} = Ff_i$ for $i \in I$, and $\mathfrak{h} = \bigoplus_i Fh_i$ [2, Chapter I]. Define $(\alpha \mapsto \overline{\alpha}) \in \operatorname{Hom}_{\mathbb{Z}}(\Gamma, \mathfrak{h}^*)$ by $\overline{\alpha}_i(h_i) = a_{ii}$ for $i, j \in I$.

Let \mathfrak{r} be the sum of all graded ideals in $\mathfrak{g}(A)$ intersecting \mathfrak{h} trivially. We have the induced gradation $\mathfrak{r} = \bigoplus_{\alpha \in \Gamma} \mathfrak{r}_{\alpha}$. Setting $\mathfrak{r}_{\pm} = \mathfrak{r} \cap \widetilde{\mathfrak{n}}_{\pm}$, we obtain that $\mathfrak{r} = \mathfrak{r}_{+} \oplus \mathfrak{r}_{-}$ is a direct sum of ideals.

Our main result is the following.

THEOREM 1. For $\alpha = (k_1, \ldots, k_n) \in \Gamma$ set

$$T_{\alpha} = \sum_{1 \le i < j \le n} a_{ij} k_i k_j + \sum_{1 \le i \le n} a_{ii} \frac{1}{2} (k_i^2 - k_i)$$

and assume that the matrix A is symmetric. Then the ideal \mathfrak{r}_+ (resp. \mathfrak{r}_-) is generated as an ideal in $\widetilde{\mathfrak{n}}_+$ (resp. $\widetilde{\mathfrak{n}}_-$) by those \mathfrak{r}_{α} (resp. $\mathfrak{r}_{-\alpha}$) for which $\alpha \in \Gamma_+ \setminus \Pi$ and $T_{\alpha} = 0$.

COROLLARY [4, THEOREM 1]. If $T_{\alpha} \neq 0$ for all $\alpha \in \Gamma_+ \setminus \Pi$, then $\mathfrak{r} = 0$.

© 1981 American Mathematical Society 0002-9904/81/0000-0407/\$02.25

Received by the editors March 12, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 17B65.

¹ The hospitality of IHES where this work was done is gratefully acknowledged.