ON DEFINING RELATIONS OF CERTAIN INFINITE-DIMENSIONAL LIE ALGEBRAS ${ }^{1}$

BY OFER GABBER AND VICTOR G. KAC

Abstract

In this note we prove a conjecture stated in [2] about defining relations of the so-called Kac-Moody Lie algebras. In the finite-dimensional case this is Serre's theorem [5]. The basic idea is to map the ideal of relations into a Verma module and then to use the (generalized) Casimir operator (cf. [3, 4]).

1. The main statements. Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix over a field \mathbf{F}. Denote by $\tilde{\mathfrak{g}}(A)$ the Lie algebra over \mathbf{F} with $3 n$ generators $e_{i}, f_{i}, h_{i}, i \in I=\{1, \ldots, n\}$ and the following defining relations $(i, j \in I)$:

$$
\begin{equation*}
\left[e_{i}, f_{j}\right]-\delta_{i j} h_{i}, \quad\left[h_{i}, h_{j}\right], \quad\left[h_{i}, e_{j}\right]-a_{i j} e_{j}, \quad\left[h_{i}, f_{j}\right]+a_{i j} f_{j} \tag{1}
\end{equation*}
$$

Set $\Gamma=Z^{n}, \Gamma_{+}=\left\{\left(k_{1}, \ldots, k_{n}\right) \in \Gamma \mid k_{i} \geqslant 0\right\} \backslash\{0\}$ and let $\Pi=\left\{\alpha_{1}, \ldots\right.$, α_{n} \} be the standard basis of Γ. Setting $\operatorname{deg} e_{i}=-\operatorname{deg} f_{i}=\alpha_{i}$ for $i \in I$ defines a Γ-gradation $\tilde{\mathfrak{g}}(A)=\bigoplus_{\alpha \in \Gamma} \tilde{\mathfrak{g}}_{\alpha}$. Let $\tilde{\mathfrak{n}}_{ \pm}=\bigoplus_{\alpha \in \Gamma+} \tilde{\mathfrak{g}}_{ \pm \alpha}$ and $\mathfrak{h}=\tilde{\mathfrak{g}}_{0}$. Then $\tilde{\mathrm{n}}_{+}$and $\tilde{\mathrm{n}}_{-}$are free Lie algebras over \mathbf{F} with systems of free generators e_{1}, \ldots, e_{n} and f_{1}, \ldots, f_{n}, respectively, and $\widetilde{\mathfrak{g}}(A)=\tilde{\mathfrak{n}}_{-} \oplus \mathfrak{h} \oplus \widetilde{\mathfrak{n}}_{+}$(direct sum of vector spaces), so that $\tilde{\mathrm{g}}_{\alpha_{i}}=\mathbf{F} e_{i}, \boldsymbol{g}_{-\alpha_{i}}=\mathbf{F} f_{i}$ for $i \in I$, and $\mathfrak{h}=\bigoplus_{i} \mathbf{F} h_{i}$ [2, Chapter I]. Define $(\alpha \mapsto \bar{\alpha}) \in \operatorname{Hom}_{Z}\left(\Gamma, \mathfrak{h}^{*}\right)$ by $\bar{\alpha}_{i}\left(h_{j}\right)=a_{j i}$ for $i, j \in I$.

Let \mathfrak{r} be the sum of all graded ideals in $\widetilde{\mathfrak{g}}(A)$ intersecting \mathfrak{h} trivially. We have the induced gradation $\mathfrak{r}=\bigoplus_{\alpha \in \Gamma} \mathfrak{r}_{\alpha}$. Setting $\mathfrak{r}_{ \pm}=\mathfrak{r} \cap \tilde{\mathfrak{n}}_{ \pm}$, we obtain that $\mathfrak{r}=\mathfrak{r}_{+} \oplus \mathfrak{r}_{-}$is a direct sum of ideals.

Our main result is the following.
Theorem 1. For $\alpha=\left(k_{1}, \ldots, k_{n}\right) \in \Gamma$ set

$$
T_{\alpha}=\sum_{1 \leqslant i<j \leqslant n} a_{i j} k_{i} k_{j}+\sum_{1 \leqslant i \leqslant n} a_{i i} \frac{1}{2}\left(k_{i}^{2}-k_{i}\right)
$$

and assume that the matrix A is symmetric. Then the ideal \mathfrak{r}_{+}(resp. \mathfrak{r}_{-}) is generated as an ideal in $\tilde{\mathfrak{n}}_{+}\left(\right.$resp. $\left.\tilde{\mathfrak{n}}_{-}\right)$by those $\mathfrak{r}_{\alpha}\left(\right.$ resp. $\left.\mathfrak{r}_{-\alpha}\right)$ for which $\alpha \in \Gamma_{+} \backslash \Pi$ and $T_{\alpha}=0$.

Corollary [4, Theorem 1]. If $T_{\alpha} \neq 0$ for all $\alpha \in \Gamma_{+} \backslash \Pi$, then $r=0$.

[^0]
[^0]: Received by the editors March 12, 1980.
 1980 Mathematics Subject Classification. Primary 17B65.
 ${ }^{1}$ The hospitality of IHES where this work was done is gratefully acknowledged.

