GROTHENDIECK-RIEMANN-ROCH FOR COMPLEX MANIFOLDS

BY NIGEL R. O'BRIAN, DOMINGO TOLEDO ${ }^{1}$ AND YUE LIN L. TONG ${ }^{1}$

For a coherent analytic sheaf F on a complex manifold X and a holomorphic map $f: X \rightarrow Y$ to a complex manifold Y, with f proper on the support of F, we prove a Grothendieck-Riemann-Roch formula as in [3] relating the Todd classes of X, Y and the Chern character of 1 and its direct images. This is the first example of a Riemann-Roch theorem for general mappings of complex manifolds which are not necessarily projective varieties. For the history of this problem see $[2,7,8]$.

The theorem of Grauert shows that the direct image sheaves $R^{i} f_{*} F$ are coherent and we prove the formula

$$
\sum_{i}(-1)^{i} \operatorname{ch}\left(R^{i} f_{*} F\right) \operatorname{Todd}(Y)=f_{*}(\operatorname{ch}(F) \operatorname{Todd}(X)) .
$$

The characteristic classes of X and Y are defined as in [1] and the Chern characters as in [9], so that all classes lie in Hodge cohomology. The theorem thus relates analytic, rather than topological, invariants of F and its direct images. The same general methods should also lead to the corresponding statements for topological invariants in singular cohomology [2] and perhaps other cohomology theories. The de Rham Chern classes defined in [6] should be relevant in this context.

The proof is based throughout on the techniques of twisting cochains and local formulae introduced in [12] and developed in subsequent papers, and follows Grothendieck's approach to the extent that we factor f as $\pi^{\circ} \Gamma$ where Γ : $X \rightarrow X \times Y$ is the graph of f and $\pi: X \times Y \longrightarrow Y$ is the projection. We first prove the following two special cases.

Theorem A. Suppose $\iota: X \rightarrow Z$ is a closed embedding with the property that there exists a holomorphic retraction $\rho: Z \rightarrow X$ of maximal rank in a neighbourhood of $\iota(X)$. Then

$$
\operatorname{ch}\left(\iota_{*} F\right)=\iota_{*}\left(\operatorname{Todd}(N)^{-1} \operatorname{ch}(F)\right)
$$

where N is the normal bundle of X in Z.

[^0]
[^0]: Received by the editors March 7, 1981. 1980 Mathematics Subject Classification. Primary 14C20, 32L10.
 $\left.{ }^{1}{ }^{1}\right)$ Partially supported by NSF Grants MCS 79-02753 and MCS 79-03798.

