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0. Background. 
(A) This paper is an expanded version of one read at the Poincaré 

Symposium of the American Mathematical Society at Bloomington, Indiana, 
in April 1980. The subject belongs to the "higher" theory of Riemann 
surfaces, and some readers may not object to being reminded of the main 
facts in the "standard" theory. 

A Riemann surface S is a connected surface on which one can do complex 
function theory which is, locally, not distinguishable from ordinary complex 
function theory in a domain of the complex number plane C. More precisely, 
it is required that S be a connected Hausdorff space, that certain continuous 
complex valued functions on subdomains of S be designated as holomorphic, 
and that the following propositions be valid, (i) For every point P of S there 

Received by the editors December 15, 1980. 
1 This material is based upon work supported by the National Science Foundation under 

Grant No. MCS 78-27119. 
1980 Mathematics Subject Classification. Primary 14H15, 30C60, 30F40, 32G15. 

© 1981 American Mathematical Society 
0002-9904/81 /0000-0402 /$ 11.50 

131 


