ON THE HOPF INDEX THEOREM AND THE HOPF INVARIANT¹

BY KUO-TSAI CHEN

Let $f: N \to M$ be a C^{∞} map of oriented compact manifolds, and let L be an oriented closed submanifold of codimension $q \ge 1$ in M. If w is a closed form Poincaré dual to L, we show that $f^{-1}L$, with multiplicities counted, is Poincaré dual to f^*w in N and is even meaningful on a "secondary" level. This leads to generalized versions of the Hopf invariant, the Hopf index theorem and the Bezout theorem.

We assume that the connected components $\Gamma_1, \ldots, \Gamma_l$ of $f^{-1}L$ are submanifolds of codimension q in N. Let ord Γ_i be the intersection number of Land f|B, where B is a q-dimensional submanifold meeting Γ_i transversally at a single point. A proper choice of orientations makes ord $\Gamma_i \ge 0$.

THEOREM 1. The cycle $\Sigma(\text{ord }\Gamma_i)\Gamma_i$ is Poincaré dual to f^*w^2 .

This assertion improves a known theorem, which requires that f is transversal to L and, consequently, ord $\Gamma_i = 1$.

THEOREM 2. Let w' be an integral closed q'-form on M with q + q' - 1> dim M. If both f*w and f*w' are exact with f*w' = du on N and if σ is a closed p-form on N with $p + q + q' = \dim N$, then

$$\int_N f^* w \wedge u \wedge \sigma = \sum (\text{ord } \Gamma_i) \int_{\Gamma_i} u \wedge \sigma.$$

COROLLARY. Let $f: N \to M$ be an arbitrary C^{∞} map (without any condition on $f^{-1}L$). If r is the least positive integer making $rH_{q+q'-1}(N; Z)$ free abelian, then the cohomology class of $rf^*w \wedge u$ is integral.

A sketched proof of Theorem 1 runs as follows. There exists a (q-1)-form v on M - L with dv = w|M - L. Let σ be a closed p-form on N such that

© 1981 American Mathematical Society 0002-9904/81/0000-0305/\$01.75

Received by the editors January 24, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 57R20, 55Q25; Secondary 55M05, 14C99.

¹Work supported in part by NSF MCS 79-00321.

²The author wishes to thank the referee for pointing out the general validity of Theorems 1 and 2. Our proof of these theorems is a modification of the original version, which, however, already suffices to cover Theorem 3 and other applications in this note.