ON THE HOPF INDEX THEOREM AND THE HOPF INVARIANT ${ }^{1}$

BY KUO-TSAI CHEN

Let $f: N \rightarrow M$ be a C^{∞} map of oriented compact manifolds, and let L be an oriented closed submanifold of codimension $q \geqslant 1$ in M. If w is a closed form Poincaré dual to L, we show that $f^{-1} L$, with multiplicities counted, is Poincaré dual to $f^{*} w$ in N and is even meaningful on a "secondary" level. This leads to generalized versions of the Hopf invariant, the Hopf index theorem and the Bezout theorem.

We assume that the connected components $\Gamma_{1}, \ldots, \Gamma_{l}$ of $f^{-1} L$ are submanifolds of codimension q in N. Let ord Γ_{i} be the intersection number of L and $f \mid B$, where B is a q-dimensional submanifold meeting Γ_{i} transversally at a single point. A proper choice of orientations makes ord $\Gamma_{i} \geqslant 0$.

Theorem 1. The cycle $\Sigma\left(\operatorname{ord} \Gamma_{i}\right) \Gamma_{i}$ is Poincaré dual to $f *{ }^{*}{ }^{2}$
This assertion improves a known theorem, which requires that f is transversal to L and, consequently, ord $\Gamma_{i}=1$.

Theorem 2. Let w^{\prime} be an integral closed q^{\prime}-form on M with $q+q^{\prime}-1$ $>\operatorname{dim} M$. If both $f^{*} w$ and $f^{*} w^{\prime}$ are exact with $f^{*} w^{\prime}=d u$ on N and if σ is a closed p-form on N with $p+q+q^{\prime}=\operatorname{dim} N$, then

$$
\int_{N} f^{*} w \wedge u \wedge \sigma=\sum\left(\operatorname{ord} \Gamma_{i}\right) \int_{\Gamma_{i}} u \wedge \sigma
$$

Corollary. Let $f: N \rightarrow M$ be an arbitrary C^{∞} map (without any condition on $f^{-1} L$). If r is the least positive integer making $r H_{q+q^{\prime-1}}(N ; Z)$ free abelian, then the cohomology class of $r f^{*} w \wedge u$ is integral.

A sketched proof of Theorem 1 runs as follows. There exists a $(q-1)$ form v on $M-L$ with $d v=w \mid M-L$. Let σ be a closed p-form on N such that

[^0]
[^0]: Received by the editors January 24, 1981.
 1980 Mathematics Subject Classification. Primary 57R20, 55Q25; Secondary 55M05, 14 C 99.

 1 Work supported in part by NSF MCS 79-00321.
 ${ }^{2}$ The author wishes to thank the referee for pointing out the general validity of Theorems 1 and 2. Our proof of these theorems is a modification of the original version, which, however, already suffices to cover Theorem 3 and other applications in this note.

