BOOK REVIEWS

Families of meromorphic functions on compact Riemann surfaces, by Makoto Namba, Lecture Notes in Math., vol. 767, Springer-Verlag, Berlin and New York, 1979, xii + 284 pp., \$16.30.

The theory of compact Riemann surfaces, or equivalently of nonsingular algebraic curves over the complex numbers, has long been a rich and rewarding field of study and remains a surprisingly lively area of current research interest. Among the problems still actively being investigated are a number involving divisors and their associated meromorphic functions, following the trail blazed by Riemann, Abel, Jacobi, and many others. Recall that a divisor on an algebraic curve M is an element of the free abelian group generated by the points of M, or in other words is a finite sum $D = \sum_i n_i P_i$ where $n_i \in \mathbb{Z}$ and $P_i \in M$; such a divisor is called positive or effective and written $D \ge 0$ if each $n_i \ge 0$, and the degree of the divisor is the integer deg $D = \sum_{i} n_{i}$. To any meromorphic function f not identically zero on M there is associated its divisor $D(f) = \sum_i n_i P_i$, where n_i is the order of f at the point P_i ; $n_i > 0$ if f has a zero of order n_i at P_i , $n_i < 0$ if f has a pole of order $|n_j|$ at P_j , and points at which f is of order 0 are usually not listed. If $D(f) = \sum_{j} n_{j}P_{j}$ then deg $D = \sum_{j} n_{j} = 0$ and $\frac{1}{2}\sum_{j}|n_{j}|$ is the order of the function f; a function f of order n when viewed as a holomorphic mapping f: $M \rightarrow \mathbf{P}^1$ exhibits M as an n-sheeted branched covering of the Riemann sphere \mathbf{P}^1 . Conversely it is traditional to associate to any divisor D the complex vector space L(D) consisting of the zero function together with all those meromorphic functions f on M such that $D(f) + D \ge 0$; thus if $f \ne 0$ then $f \in L(\sum_{i} n_{i}P_{i})$ if the singularities of f are at most poles of order n_{i} at those points P_i for which $n_i > 0$ and f has zeros of order at least $|n_i|$ at those points P_i for which $n_i < 0$. The dimension of the projective space associated to L(D)is called the dimension of the divisor D and is denoted by dim D, so that dim $D = \dim_{C} L(D) - 1$; considering the associated projective space rather than L(D) itself really amounts to emphasizing the divisors of the functions rather than the functions themselves, since D(f) = D(cf) whenever $c \in \mathbf{C}$ and $c \neq 0$. If D is a positive divisor with deg $D = n \ge 2g - 1$ where g is the genus of the curve M then it follows from the Riemann-Roch theorem that dim D = n - g; however if 0 < n < 2g - 1 then dim D is a subtle and quite nontrivial function of the divisor D and the curve M.

For instance if D is a positive divisor on M with deg D = n and dim $D \ge 1$ 1 then there are at least 2 linearly independent meromorphic functions in L(D), so one of them must be a nonconstant function of some order $k \le n$; thus if there exists on M a divisor $D \ge 0$ with deg D = n and dim $D \ge 1$ then M can be represented as a k-sheeted branched covering of \mathbf{P}^1 for some $k \le n$. If M has genus g > 1 then dim $D \ge 1$ for any divisor $D \ge 0$ with deg $D \ge 2g - 1$; it had long been asserted in the literature that on any curve of genus g there exists a divisor $D \ge 0$ with deg $D \le (g + 3)/2$ and dim D ≥ 1 , but the first complete proof was only given in 1960 by T. Meis, [20]. It