LINEAR GROUPS OF FINITE COHOMOLOGICAL DIMENSION

BY ROGER C. ALPERIN ${ }^{1}$ AND PETER B. SHALEN ${ }^{1}$

Our main result provides necessary and sufficient conditions for a finitelygenerated subgroup of $G L_{n}(\mathbf{C}), n>0$, to have finite virtual cohomological dimension. A group has finite virtual cohomological dimension (VCD) if it has a subgroup of finite index which has finite cohomological dimension; this dimension is, in fact, the same for all torsion-free subgroups of finite index. It is, of course, necessary for a group Γ with $\operatorname{VCD}(\Gamma)<\infty$ to have torsion-free subgroups of finite index; this is guaranteed in the case of finitely-generated linear groups by a well-known result of Selberg which extends ideas of Minkowski.

A subgroup of $G L_{n}(\mathbf{C})$ is called unipotent if it is contained in a conjugate of the group of upper triangular matrices with all diagonal entries equal to one. Any unipotent subgroup is nilpotent; hence, a finitely-generated unipotent subgroup is polycyclic and torsion-free. It is well known that a polycyclic group has finite cohomological dimension if and only if it is torsion-free; moreover, the cohomological dimension is the same as the Hirsch rank. For a solvable group Γ with solvable series, $1=\Gamma_{n}<\Gamma_{n-1}<\cdots<\Gamma_{1}=\Gamma$, the Hirsch rank, $h(\Gamma)=$ $\Sigma_{i=1}^{n-1} \operatorname{dim}_{\mathrm{Q}}\left(\Gamma_{i} / \Gamma_{i+1} \otimes \mathrm{Q}\right)$, is independent of the choice of solvable series; thus, for a polycyclic group $\Gamma, h(\Gamma)$ is the number of infinite factors in a normal series with cyclic quotients.

We announce our main result.
Theorem. Let A be a finitely-generated integral domain of characteristic zero. A group $\Gamma \subset G L_{n}(A), n>0$, has finite $V C D$ if and only if there is a finite upper bound on the Hirsch ranks of its finitely-generated unipotent subgroups.

We obtain easily the following curious corollary.
Corollary 1. Every finitely-generated subgroup of the unitary group $U_{n}(\mathbf{C}), n>0$, has finite virtual cohomological dimension.

The following result is immediate; it, however, was original motivation for our Theorem.

1980 Mathematics Subject Classification. Primary 20J05; Secondary 20H20.
${ }^{1}$ Research supported by the National Science Foundation.

