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LINEAR GROUPS OF 
FINITE COHOMOLOGICAL DIMENSION 
BY ROGER C. ALPERIN1 AND PETER B. SHALEN1 

Our main result provides necessary and sufficient conditions for a finitely-
generated subgroup of GLn(C), n > 0, to have finite virtual cohomological dimen
sion. A group has finite virtual cohomological dimension (VCD) if it has a sub
group of finite index which has finite cohomological dimension; this dimension is, 
in fact, the same for all torsion-free subgroups of finite index. It is, of course, 
necessary for a group r with VCD(T) < °° to have torsion-free subgroups of fi
nite index; this is guaranteed in the case of finitely-generated linear groups by a 
well-known result of Selberg which extends ideas of Minkowski. 

A subgroup of GLn(C) is called unipotent if it is contained in a conjugate 
of the group of upper triangular matrices with all diagonal entries equal to one. 
Any unipotent subgroup is nilpotent; hence, a finitely-generated unipotent sub
group is poly cyclic and torsion-free. It is well known that a poly cyclic group has 
finite cohomological dimension if and only if it is torsion-free; moreover, the 
cohomological dimension is the same as the Hirsch rank. For a solvable group T 
with solvable series, 1 = Tn < Fn_l < • • • < I \ = T, the Hirsch rank, h(T) = 
Sĵ Tj1 dimQ(ryr /+1 <8> Q), is independent of the choice of solvable series; thus, 
for a polycyclic group r, h(T) is the number of infinite factors in a normal series 
with cyclic quotients. 

We announce our main result. 

THEOREM. Let A be a finitely-generated integral domain of characteristic 
zero. A group T C GLn(A), n > 0, has finite VCD if and only if there is a finite 
upper bound on the Hirsch ranks of its finitely-generated unipotent subgroups. 

We obtain easily the following curious corollary. 

COROLLARY 1. Every finitely-generated subgroup of the unitary group 
Un(C), n > 0, has finite virtual cohomological dimension. 

The following result is immediate; it, however, was original motivation for 
our Theorem. 
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