NEW CONNECTION METHOD ACROSS MORE GENERAL TURNING POINTS ${ }^{1}$

BY J. F. PAINTER AND R. E. MEYER

The basic oscillator or Schroedinger equation

$$
\begin{equation*}
\epsilon^{2} d^{2} w / d z^{2}+q^{2} w(z)=0, \quad \epsilon \downarrow 0 \tag{1}
\end{equation*}
$$

with $q(z)$ analytic, except for a root or singular point at $z=0$, poses a wellknown connection problem. WKBJ or $L-G$ approximations

$$
\begin{align*}
w & \sim A q^{-1 / 2} \exp (i \xi / \epsilon)+B q^{-1 / 2} \exp (-i \xi / \epsilon) \tag{2}\\
d w / z & \sim\left(i q^{1 / 2} / \epsilon\right)[A \exp (i \xi / \epsilon)-B \exp (-i \xi / \epsilon)]
\end{align*}
$$

with

$$
\begin{equation*}
\xi=\int_{0}^{z} q(s) d s \tag{3}
\end{equation*}
$$

and constants A, B are valid in suitable regions, but not in a neighborhood of the transition point. The constants A_{l}, B_{l} in (2) valid to the left of such a point generally differ from those, A_{r}, B_{r}, valid to the right. Langer [1] found one constant pair in terms of the other for the class of "fractional turning points" at which $z^{-v} q(z)$ is analytic for real $v>-1$. But, if branch points, even of infinite order, be thus admitted, why not logarithms of z and still other branch points?

The reason lies in his "central connection" method by uniform approximation even near $z=0$. For fractional turning points such approximands to $w(z)$ are furnished by Bessel functions, but for logarithmic turning points they are necessarily less tractable. Uniform approximation, however, is not a prerequisite for connection, nor is it needed for the most important physical applications, e.g., in scattering.

A new method will now be summarized which solves the problem for a more general class of equations (1) characterized (a precise statement is found in the Appendix) by

$$
\begin{equation*}
\varphi(\xi):=1 / 2 q^{-2} d q / d z=\xi^{-1}(\gamma+o(1)) \quad \text { as } \xi \longrightarrow 0 \tag{4}
\end{equation*}
$$

with real $\gamma<1 / 2$. This includes the fractional turning points, where $\gamma=1 / 2 v /(1+v)$ $(<1 / 2$ since $v>-1)$, and also logarithmic turning points, where $q(z) \sim z^{v}(\log z)^{\mu}$

[^0]
[^0]: Received by the editors June 12, 1980 and, in revised form, November 17, 1980.
 1980 Mathematics Subject Classification. Primary 34E20; Secondary 41A60.
 ${ }^{1}$ Supported by NSF and WARF, sponsored by the U. S. Army under Contract DAAG29-80-C-0041.

