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Fermafs last theorem, a genetic introduction to algebraic number theory, by 
Harold M. Edwards, Graduate Texts in Math. Springer-Verlag, Berlin and 
New York, 1977, xv + 410 pp. 

13 Lectures on Fermafs last theorem, by Paulo Ribenboim, Springer-Verlag, 
Berlin and New York, 1979, xvi + 302 pp. 

For more than three centuries many good and many not so good mathema­
ticians have attempted to prove Fermafs last theorem. While the collected 
efforts of these mathematicians have not yet led to a solution of this problem, 
much is now known about the problem and more importantly much new 
mathematics has been discovered in the process of working on the conjecture. 

Fermafs last theorem can be simply stated as: Show that xn + yn = zn 

has no integral solutions with n > 2 and xyz =£ 0. It clearly sufficies to prove 
this result f or n = 4 and n = p, din odd prime. When n — p, the theorem has 
been traditionally separated into two parts called case 1 and case 2. The first 
case is to show the equation has no solution with xyz ^ 0 (mod/?) and the 
second is to show no solution exists with xyz = 0 (mod/?). 


