FOR n > 3 THERE IS ONLY ONE FINITELY ADDITIVE ROTATIONALLY INVARIANT MEASURE ON THE *n*-SPHERE DEFINED ON ALL LEBESGUE MEASURABLE SUBSETS

BY DENNIS SULLIVAN

The following paragraph is taken from the introduction of Joseph Rosenblatt's paper [R].

"Let β be the ring of Lebesgue measurable sets in the *n*-sphere S^n , and let λ_n denote the Lebesgue measure on β normalized by $\lambda_n(S^n) = 1$. The classical characterization by Lebesgue of λ_n is that it is the unique positive real-valued function μ on β which satisfies these three conditions:

(a) $\mu(S^n) = 1;$

- (b) μ is invariant under isometries;
- (c) μ is countably additive.

In 1923 Banach [B] studied the question of Ruziewicz whether μ is still unique when (c) is replaced by

 (c_0) μ is finitely additive.

Banach gave a negative answer to this question for S^1 but for S^n , $n \ge 2$, the question is still unanswered."

From the body of Rosenblatt's paper one can extract the implication that if Lebesgue measure λ_n on S^n is not characterized by (a), (b), and (c₀) then there is a net of measurable subsets $(A_{\alpha}) \subset S^2$ which is asymptotically invariant and nontrivial, namely $\lim_{\alpha} (\lambda_n (gA_{\alpha} \Delta A_{\alpha})/\lambda_n A_{\alpha}) = 0$ for all rotations g and so that $0 < \lambda_n (A_{\alpha}) \le c < 1$ (Theorem 1.4 of [**R**]). Here $A \Delta B = A \cup B - A \cap B$.

The following Proposition will show that such asymptotically invariant nets on S^n are impossible, n > 3.

PROPOSITION. For each n > 3 there is a countable subgroup Γ_n in the group O_{n+1} of rotations of S^n satisfying

(i) the action of Γ_n on S^n is ergodic,

(ii) the group Γ_n satisfies Kazhdan's property T:

There exist a finite subset $\Lambda \subset \Gamma_n$ and an $\epsilon > 0$, so that for any unitary representation π if Γ , if there exists a vector ζ in H_{π} such that $\|\zeta\| = 1$,

© 1981 American Mathematical Society 0002-9904/81/0000-0012/\$01.75

Received by the editors July 28, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 28D10.