SMOOTH BOUNDED STRICTLY AND WEAKLY PSEUDOCONVEX DOMAINS CANNOT BE BIHOLOMORPHIC

BY STEVEN BELL

There is no Riemann mapping theorem in the theory of functions of several complex variables; nor is there a Riemann nonmapping theorem. In fact, until recently, it was not known whether it is possible for a smooth bounded strictly pseudoconvex domain to be biholomorphically equivalent to a smooth bounded weakly pseudoconvex domain. The paper [1] answers this question in the negative by proving

Theorem 1. If D_{2} is a smooth bounded pseudoconvex domain, and D_{1} is a smooth bounded domain whose $\bar{\partial}$-Neumann problem satisfies global regularity estimates, then biholomorphic mappings between D_{1} and D_{2} extend smoothly to the boundary.

In particular, it is known (Kohn [6]) that the $\bar{\partial}$-Neumann problem satisfies global regularity estimates in smooth bounded strictly pseudoconvex domains. Hence, a biholomorphic mapping between a smooth bounded strictly pseudoconvex domain and a smooth bounded weakly pseudoconvex domain would extend smoothly to the boundary. Since strict pseudoconvexity is preserved under biholomorphic mappings which extend to be C^{2} up to the boundary, both domains must be strictly pseudoconvex.

Other domains for which the $\bar{\partial}$-Neumann problem is known to satisfy global regularity estimates include smooth bounded weakly pseudoconvex domains with real analytic boundaries [7], [2] and certain domains of finite type [7].

The proof of Theorem 1 exploits the transformation rule for the Bergman projection. If P_{i} denotes the Bergman orthogonal projection of $L^{2}\left(D_{i}\right)$ onto its subspace of holomorphic functions, $i=1,2$, and if $f: D_{1} \rightarrow D_{2}$ is a biholomorphic mapping, then

$$
P_{1}(u \cdot(\phi \circ f))=u \cdot\left(\left(P_{2} \phi\right) \circ f\right)
$$

where $u=\operatorname{Det}\left[f^{\prime}\right]$ and $\phi \in L^{2}\left(D_{2}\right)$. It is possible to construct functions ϕ which vanish to arbitrarily high order on $b D_{2}$ such that $P_{2} \phi \equiv 1$. If ϕ is such a function which vanishes to a high enough order on $b D_{2}$ to make $u \cdot(\phi \circ f)$ smooth up to the boundary, then u is the projection of a function which is smooth up to the

