THE STABILITY OF THE BERGMAN KERNEL AND THE GEOMETRY OF THE BERGMAN METRIC

BY ROBERT E. GREENE AND STEVEN G. KRANTZ 2

If D is a bounded open subset of \mathbb{C}^n , the set $H = \{f : D \to \mathbb{C} | f \text{ is holomorphic and } \int_D |f|^2 < +\infty \}$ is a separable infinite-dimensional Hilbert space relative to the inner product $\langle f, g \rangle = \int_D f\overline{g}$. The completeness of H can be seen from Cauchy integral estimates. Similar estimates show that for any $p \in D$ the functional $f \mapsto f(p), f \in H$, is continuous. Thus there is a unique element $K_D(z, p) \in H$ (as a function of z) such that,

$$f(p) = \int f(z)\overline{K_D(z, p)}dV(z)$$
 for all $f \in H$.

The function K_D is called the Bergman kernel function. If $\{\varphi_i\}_{i=1}^\infty$ is an orthonormal basis for \mathcal{H} then $K_D(z,\,p)=\Sigma_i\varphi_i(z)\overline{\varphi_i(p)}$. The convergence of the series is absolute, uniformly on compact subsets of $D\times D$. For any $z\in D$, $K_D(z,\,z)>0$ and $\log K_D(z,\,z)$ is a real analytic function on D. The Hermitian form

$$\sum_{i,j} \frac{\partial^2}{\partial z_i \partial \overline{z_j}} \log K_D(z, z) dz_i \otimes d\overline{z_j}$$

is positive definite on D and defines a Kähler metric on D called the Bergman metric of D. Calculations using orthonormal bases show that if $F\colon D_1 \longrightarrow D_2$ is a biholomorphic mapping then F is an isometry of the Bergman metric of D_1 to that of D_2 . Thus differential geometric methods can be used to study such mappings. The Bergman metric is usually hard to compute explicitly; but, especially in the case of C^∞ strongly pseudoconvex domains, considerable information can be obtained by indirect methods. The starting point for such investigation is the observation that $K_D(\cdot, p)$ is, in a suitable sense, the orthogonal projection on H of the delta function δ_p . This projection can be expressed in terms of the solution of the $\overline{\partial}$ -Neumann problem; a set of powerful techniques is thereby brought to bear on the matter. With these techniques, extensive information about the behavior of $K_D(z, p)$ for p, z near the boundary of D has been obtained [9], [3].

Received by the editors July 11, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 32H10, 35N15; Secondary 32G05, 32H05, 53C55.

¹Research supported in part by NSF Grant #MCS79-01062, The Institute for Advanced Study, and an Alfred P. Sloan Foundation Fellowship.

²Research supported by the National Science Foundation MCS77-02213.