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AFFINE LIE ALGEBRAS AND HECKE MODULAR FORMS 

BY V. G. KAC AND D. H. PETERSON 

The character of a highest weight representation of an affine lie algebra 
can be written as a finite sum of products of classical 0-functions and certain 
modular functions, called string functions. We find the transformation law for 
the string functions, which allows us to compute them explicitly in many inter­
esting cases. Finally, we write an explicit formula for the partition function, in 
the simplest case A[x\ and compute the string functions directly. After multi­
plication by the cube of the T?-function, they turn out to be Hecke modular forms! 

1. (See [3] or [7] for details.) Let g be a complex finite-dimensional simple 
lie algebra, § a Cartan subalgebra of g. A the set of roots of § in g. A+ a set of 
positive roots, II = {OLX , . . . , a;} the corresponding set of simple roots, 0 the 
highest root. Let (,) be an invariant symmetric bilinear form on g normalized 
by (6,6) = 2. For a € ^ * with (a, a) * 0 define Ha G § by 0(#a) = 2(0, a)/(a, a) 
for j8 G §*. Let W be the Weyl group of § in g. Denote by M the Z-span of 
W6 (long roots). 

Let C[t, t"1] be the algebra of Laurent polynomials over C in an indeter­
minate t. We regard g' := C[t, t~x] ®cg as an (infinite-dimensional) complex 
lie algebra. Define the affine Lie algebra g as follows. Let g = 'g © Cc © Cd 
and define the bracket by 

( dx \ dx 

for x, y G 'gf. The algebra g is an important example of a Kac-Moody algebra 
[5], [10]. Note that Cc is the center of the algebra g. The subalgebra % = 
i) <B Cc 0 Giis called the Cartan subalgebra of g. For a G §* set ga = 
{x G g | [ft, x] = a(h)x for ft G §}; then we have the root space decomposition 

8 = ®9<r 
Detine a nondegenerate symmetric bilinear form (,) on § by (ft, ft') is un­

changed if ft, ft' G § C 6, (ft, c) = (ft, d) = 0 for ft G fc>, (c, c) = (tf, J) = 0, 
(c, rf) = 1. We identify § with §* by this form; then §* is identified with a 
subspace in %* by a(c) = a(<2) = 0 for a G §*. For a G §* set a = aL „ so that 
Se §* C |* . Define 6 G $* by 6(A) = 0 for ft G §, 6(c) = 0, 6(d) = 1. 
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