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WEIGHTS, SHARP MAXIMAL FUNCTIONS 

AND HARDY SPACES1 

BY JAN-OLOV STRÖMBERG AND ALBERTO TORCHINSKY 

A considerable development of harmonic analysis in the last few years has 
been centered around a function space shown in a new light, the functions of 
bounded mean oscillation, and the weighted inequalities for classical operators. 
The new techniques introduced by C. Fefferman and E. M. Stein and B. Mucken-
houpt are basic in these areas. It is our purpose here to develop some of these 
results in a very general setting, namely that of a metric space (X, d) endowed 
with a doubling measure cfyi and a weighted measure dv = wdp with positive 
weight w. When there are a constant c and a number q > 0 such that if B(x, f) = 
{y SX: d(x, y) <r} then tx(B(x, ri)) < c f*y(B(x, r)) for all t > 1,r > 0 and 
x G X we say that yt satisfies the D condition and that // is doubling, or ju GZ)^, 
when H^Dq for some q. We further assume that ix(B(x, r)) is a continuous 
function of r and that compactly supported continuous functions are dense in 
Ll(dyi). Because of the numerous applications of these results we feel that a de
tailed study is justified and a description of the new methodology needed to de
velop it follows. 

For each B(x, r) = 2? we define the median value wB as y/txt2 where tx = 
sup{r > 0: VL{X G B: W(X) < t} < y(B)l2} and t2 = inf{f > 0: fi{x G B: w(x) 
> t} < fi(B)/2}. Then w satisfies the A^ condition, or w G 4 ^ , if v(B)/ix(B) < 
cwB. When w G A„, w~ 1I^" *> G A^ also for some p > 1 and there is equiva
lent to saying that w satisfies the usual Ap condition, or w G Ap. Aside from the 
trivial implications the conditions .4 and Dq are independent. For A^ weights 
the following properties are obtained: 

(1) (fBwrdn)/ix(B) ~ (wBY for r = px > 1 and r = - 02 < 0; 
(2) if Bx C B9 then for some yt > jfy and a constant c, 

c-\ttB1)ltiB))1 + lh2 < KB1)KB) < c(tiBl)im)1~lhil 

(3) a strong version of the P. Jones factorization holds, to wit, if w satis
fies (1) and (2) then w = wxw2 where both wx and w2 also satisfy (1) and (2) 
with indices yx - e and y2 + e. In addition wx(x) > cwB and w2(x) < cwB for 
all xinB. 

The proof of (3) is too intricate to be described here but it requires the 
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