HOMOLOGY OF GROUP SYSTEMS WITH APPLICATIONS TO LOW-DIMENSIONAL TOPOLOGY

BY S. J. LOMONACO, JR.¹

Eilenberg-Mac Lane complexes are generalized to *GEM complexes*. This generalization is then shown to unify many diverse seemingly unrelated concepts in low-dimensional topology. All 2-dimensional *CW*-complexes [1], all 3-dimensional manifolds [5], and all smooth 2-knot exteriors [5] are shown to be GEM complexes. A method is given for computing the (co)homology of the universal cover of a GEM complex from the (co)homology of a naturally associated group system. Hence, this yields a method for computing the second homotopy group π_2 and the k-invariant in $H^3(\pi_1; \pi_2)$.

I. GEM complexes.

DEFINITION. A generalized Eilenberg-Mac Lane (GEM) complex is a CW-complex K together with nonempty subcomplexes K_{-}, K_{0}, K_{+} such that (1) $K = K_{-} \cup K_{+}$, (2) $K_{0} = K_{-} \cap K_{+}$, (3) each K_{λ} is 0-connected and aspherical (i.e., $\pi_{q}K_{\lambda} = 0$ for $q \neq 1$) for $\lambda = -, 0, +$. The associated group system $\mathbf{G} = \pi_{1}\mathbf{K}$ is the collection of groups, $\{\pi_{1}K_{-}, \pi_{1}K_{0}, \pi_{1}K_{+}\}$ together with the morphisms induced by inclusion.

THEOREM 1. Let K and K' be two GEM complexes. If an associated group system $\pi_1 \mathbf{K}$ of K is isomorphic to an associated group system $\pi_1 \mathbf{K}'$ of K', then K and K' are of the same homotopy type. Hence, the name "GEM" and the notation $K = K(\mathbf{G}, 1)$ are justified.

THEOREM 2. For every group system G, the GEM complex K(G, 1) exists.

REMARK 1. The exterior of every smooth 2-knot (S^4, kS^2) is a GEM complex since every 2-knot has a hyperbolic splitting. (See [5].) (This is a natural 4-dimensional analogue of the asphericity of classical knots [9].) Every 3-manifold is a GEM complex since every such 3-manifold has a Heegaard splitting of positive genus. Every 2-dimensional *CW*-complex has a subdivision which is a GEM complex [1].

II. Group systems.

DEFINITION. Let G be a group system and let G denote its direct limit

¹Supported in part by a State University of New York Summer Research Grant.

Presented to the Society, August 25, 1979, under the title, Algebraic 3-type and the homology of group systems; received by the editors May 19, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 55N25, 55N35, 55Q52, 57Q45; Secondary 55S45, 57M05, 57M10.