BLOCKS WITH CYCLIC DEFECT GROUPS IN $G L(n, q)$

BY PAUL FONG AND BHAMA SRINIVASAN ${ }^{1}$
Let G be a finite group and B an r-block of G with cyclic defect group R. The decomposition of the ordinary characters in B into modular characters is described by the Brauer tree T of B. The problem of determining the Brauer trees for finite groups of Chevalley type was proposed by Feit at the 1979 AMS Summer Institute. Our result is a necessary step in this problem: If $G=$ $G L(n, q)$ and r is an odd prime not dividing q, then T is an open polygon with its exceptional vertex at one end. The proof also shows an interesting fit of the modular theory for such primes r with the underlying algebraic group, the Deligne-Lusztig theory, and Young diagrams.

Because R is a cyclic defect group, R has the form

$$
R=\left(\begin{array}{ll}
I_{l} & 0 \tag{1}\\
0 & R_{1}
\end{array}\right)
$$

where the elementary divisors of a generator of R_{1} are, say, m copies of an irreducible polynomial of degree d over F_{q}. By (1) the structure of $C=C_{G}(R)$ is

$$
C=\left(\begin{array}{ll}
C_{0} & 0 \tag{2}\\
0 & C_{1}
\end{array}\right)
$$

where $C_{0} \simeq G L(l, q)$ and $C_{1} \simeq G L\left(m, q^{d}\right)$. The normalizer $N=N_{G}(R)$ is then obtained by adjoining to C an element t of the form

$$
t=\left(\begin{array}{ll}
I_{l} & 0 \\
0 & t_{1}
\end{array}\right)
$$

where t_{1} induces a field automorphism of order d on C_{1}.
By Brauer's First Main Theorem B corresponds to a block B_{C} of C with defect group R, where B_{C} is determined up to conjugacy in N. Let E be the stabilizer of B_{C} in N, so $e=|E: C|$ is then the inertial index of B. Let Λ be a set of representatives for the orbits of E on the set of nontrivial irreducible characters of R. In the Brauer-Dade theory [1] the exceptional characters χ_{λ} in B are labeled by λ in Λ, the nonexceptional characters χ_{i} in B by $i=$ $1,2, \ldots, e$, and the $e+1$ vertices of T by $\chi_{1}, \chi_{2}, \ldots, \chi_{e}$, exc.

Received by the editors April 22, 1980.
AMS (MOS) Subject Classifications (1970). Primary 20C20, $20 \mathrm{G40}$.
${ }^{1}$ This research was supported by NSF grants MCS79-02750 and MCS78-02184.

