DYNAMICS OF HOROSPHERICAL FLOWS BY S. G. DANI Let G be a reductive Lie group; that is, the adjoint representation is completely reducible. A subgroup U of G is said to be *horospherical* if there exists $g \in G$ such that $$U = \{ u \in G \mid g^j u g^{-j} \to e \text{ as } j \to \infty \}$$ where e is the identity element of G. The action of a horospherical subgroup (respectively a maximal horospherical subgroup) on a homogeneous space G/Γ , where Γ is a discrete subgroup, is called a *horospherical flow* (resp. a *maximal horospherical flow*). The classical horocycle flows associated to surfaces of constant negative curvature, studied by G. A. Hedlund and other authors, can be viewed as horospherical flows on homogeneous spaces of $SL(2, \mathbb{R})$. In the case when Γ is a *co-compact* discrete subgroup of $SL(2, \mathbb{R})$ it was proved by H. Furstenberg that the horocycle flow is uniquely ergodic; i.e. it admits a unique invariant probability measure (cf. [6]). In particular, this implies a result of G. A. Hedlund that the horocycle flow is minimal; i.e. every orbit is dense. Satisfactory generalisations of these assertions for all horospherical flows on *compact* homogeneous spaces are available in literature (cf. [5] and [7]). The purpose of this note is to announce similar results for maximal horospherical flows on homogeneous spaces G/Γ where Γ is any lattice; i.e. Γ is a discrete subgroup such that G/Γ admits a finite G-invariant measure, but may not necessarily be compact. When G/Γ , as above, is noncompact the horospherical flow fails to be uniquely ergodic. The general task therefore is to obtain a description of all ergodic invariant measures of the horospherical flow. We prove the following. 1. THEOREM. Let G be a reductive Lie group and Γ be a lattice in G. Let N be a maximal horospherical subgroup of G. Let σ be an N-invariant ergodic probability measure. Then there exists a connected Lie subgroup L of G and an element $x \in G$ such that (i) $Lx\Gamma/\Gamma$ is a closed L-orbit in G/Γ and (ii) σ is L invariant and $\sigma(G/\Gamma - Lx\Gamma/\Gamma) = 0$. It is not difficult to show that in the special case when G/Γ is compact Theorem 1 yields the known results for maximal horospherical flows. The proof is achieved using a characterisation of the haar measure of a Received by the editors April 22, 1980. ¹⁹⁸⁰ Mathematics Subject Classification. Primary 58F11; Secondary 22D40, 28D99, 54H20.