A POINCARÉ-HOPF TYPE THEOREM FOR THE DE RHAM INVARIANT

BY DANIEL CHESS
The Poincaré-Hopf theorem relates the Euler-characteristic of a manifold to the local behavior of a generic vector-field on the manifold in a neighborhood of its zeroes. As a corollary of this, by taking the gradient, one can calculate the Euler-characteristic of a manifold from a local knowledge of a generic map to R^{1} around its singular points. We prove an analogue of this theorem for calculation of the de Rham invariant of $4 k+1$ dimensional orientable manifolds from a map to R^{2}.

For $4 k+1$ dimensional orientable manifolds we have the de Rham invariant $d(m)$. This invariant is
(a) the rank of the 2-torsion in $H_{2 k}(M)$,
(b) $\hat{\chi}_{Q}(M)-\hat{\chi}_{2}(M) \bmod 2$ where $\hat{\chi}_{F}(M)$ is the semicharacteristic of M with coefficients in F,
(c) $d(M)=\left[w_{2} w_{4 k-1}(M),[M]\right]=\left[v_{2 k} s q^{1} v_{2 k}(M),[M]\right]$, where $w_{i}(M)$ is the i th Stiefel-Whitney class and v_{i} is the i th $W u$ class of M.

For the equivalence of these definitions see [L-M-P]. The de Rham invariant is important in the theory of surgery; see [M] or [M-S].

Definition of the local invariant. Let M^{m}, N^{n} be C^{∞} manifolds. Let $C^{\infty}(M, N)$ be the space of C^{∞} maps from M to N topologized with the C^{∞} topology. Within $C^{\infty}(M, N)$ we have a dense (in fact residual) subset $G(M, N)$ of maps which are generic in the sense of Thom-Boardman [B] and satisfy the normal crossing condition [G-G]. This second condition is essentially that f is in general position as a map of its singularity submanifolds to N.

Let $f \in G\left(M, R^{2}\right)$; then $d f$ is of rank 2 except on a collection of disjoint closed curves in M, the singular set of $f, S_{1}(f)$. At points of $S_{1}(f), d f$ is of rank 1. Restricted to $S_{1}(F) f$ is an immersion except at a finite set of points, $S_{1,1}(f)$, the cusp points of $f . S_{1}(f)-S_{1,1}(f)=S_{1,0}(f)$ is the set of fold points of f. Suppose $x \in S_{1,0}(f)$ then we can choose coordinates x_{1}, \ldots, x_{n} around x and coordinates y_{1}, y_{2} around $f(x)$ so that

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, x_{2}^{2}+x_{3}^{2}+\cdots+x_{k}^{2}-x_{k+1}^{2}-\cdots-x_{n}^{2}\right)
$$

