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AN EXAMPLE OF A FIXED POINT FREE HOMEOMORPHISM 

OF THE PLANE WITH BOUNDED ORBITS 

BY STEPHANIE M. BOYLES1 

In 1912 L. E. J. Brouwer proved his famous translation theorem [3] which 
states that if h is an orientation preserving homeomorphism of E2 onto itself 
having no fixed points, then h is a translation. By a translation, Brower meant 
that for each x in E2, hn(x) —* °° as n —• ± °°; that is, the orbit of every point 
is unbounded. The question arose as to whether or not any homeomorphism of 
E2 onto itself with the property that the orbits of every point is bounded must 
have a fixed point. This eventually became known as the bounded orbit problem 

PI-
In this short note we wish to announce the existence of an orientation revers­

ing fixed point free homeomorphism h of E2 onto itself having the property that 
the orbit of every point is bounded [1]. We note that the orbit of a point p is the 
set of all iterates hn(p), where n is an integer. The homeomorphism we construct 
can be briefly described as follows. On the complement of the strip M < 1, h is a 
reflection across the j>-axis. Between the lines x = - 1 and x = 1 we first define h 
on positive images of the arc^4 = {(*, y): \x\ < 1 and y = 0} . For all integers 
m >0 andfc> 1, let 

and 

v±m,k = (Pnl(f* + 1). Z 1/0* + 0). 

For all integers ƒ and nonnegative integers k, define 

*«fc*>-Vi>*+1-/.*+r 

Extend h linearly on each line segment [ iy_ l k , Vjk] by defining 
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