STABLE AND L²-COHOMOLOGY OF ARITHMETIC GROUPS BY A. BOREL

Introduction. In [1], [2] we gave a range of dimensions in which the real cohomology of an arithmetic or S-arithmetic subgroup Γ of a connected semisimple group G over Q is naturally isomorphic to the space of harmonic forms on the quotient $X = G(\mathbf{R})/K$ of the group $G(\mathbf{R})$ of real points of G by a maximal compact subgroup K which are invariant under Γ and the identity component $G(\mathbf{R})^{\mathbf{0}}$ of $G(\mathbf{R})$, and indicated some applications to the stable cohomology of classical arithmetic groups and to algebraic K-theory. In this note we first state an extension to nontrivial coefficients, since this has become of interest in topology and K-theory [7]. A chief tool in [2] was the proof that $H^*(\Gamma; \mathbb{C})$ could be computed using differential forms on $\Gamma \setminus X$ which have "logarithmic growth" at infinity. Theorem 2 extends this to more general growth conditions. This can be used to show that certain L^2 -harmonic forms are not cohomologous to zero [9]. In §§3, 4, 5 we consider the L^2 -cohomology space $H_{(2)}(\Gamma \setminus X)$ and relate it to the spectral decomposition of the space $L^2(\Gamma \setminus G)$ of square integrable functions on $\Gamma \setminus G$. Theorem 4 gives a sufficient condition under which it is finite dimensional, hence isomorphic to the space of square integrable harmonic forms, and §5 a series of examples in which it is not. For convenience, we assume G simple over \mathbf{Q} and Γ torsion-free.

1. Let P_0 be a minimal parabolic Q-subgroup of G, S a maximal Q-split torus of P_0 , N the unipotent radical of P and n the Lie algebra of N. Let X(S)be the group of rational characters of S and $\rho \in X(S)$ be such that $a^{2\rho} =$ det Ad $a|_n$ for $a \in S$. For $\mu \in X(S)$ let $c(G, \mu)$ be the maximum of q such that $\rho - \mu - \eta > 0$, where η runs through the weights of S in $\Lambda^q n$. Let c(G) =c(G, 0). If (r, E) is a finite-dimensional complex representation of G(C), we let c(G, r) be the minimum of $c(G, \mu)$, where μ runs through the weights of r with respect to S. It is easily seen that $c(G) \ge \sum_i c(G_i)$, where G_i runs through the simple factors of G(C), and $c(G_i)$ -is defined similarly, and that $c(G_i)$ is equal to [(l-1)/2], l-1, l-2, l-1, 7, 13, 25, 5, 1 if G_i is of type A_l, B_l, C_l, D_l , E_6, E_7, E_8, F_4, G_2 .

THEOREM 1. The natural homomorphism $H^*(\mathfrak{g}, \mathfrak{k}; E)^{\Gamma} \longrightarrow H^q(\Gamma; E)$ is injective for $q \leq c(G, r)$, surjective if in addition $q < \operatorname{rk}_R G$. If $E^G = (0)$, then $H^q(\Gamma; E) = 0$ for $q \leq c(G, r)$, $(\operatorname{rk}_R G - 1)$. If G is simply connected, these

© 1980 American Mathematical Society 0002-9904/80/0000-0505/\$01.75

Received by the editors May 29, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 18H10; Secondary 20G10, 20G30, 53C39.