BOOK REVIEWS

2. J. Edmunds, Paths, trees and flowers, Canad. J. Math. 17 (1965), 449-467.

3. S. Cook, *The complexity of theorem-proving procedures*, Proc. 3rd ACM Sympos. on Theory of Computing, J. Assoc. Comput. Mach. (1971), 151-158.

4. A. Goldberg, On the complexity of the satisfiability problem, Ph.D. dissertation, Courant Institute of Mathematical Sciences, 1979.

5. R. Karp, *Reducibility among combinatorial problems*, R. Miller and J. Thatcher (eds.), Complexity of Computer Computations, Plenum Press, New York, 1972, pp. 85-103.

RONALD V. BOOK

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 3, Number 2, September 1980 © 1980 American Mathematical Society 0002-9904/80/0000-0416/\$01.75

The theory of Lie superalgebras; an introduction, by M. Scheunert, Lecture Notes in Math., vol. 716, Springer-Verlag, Berlin-Heidelberg-New York, vi + 271 pp.

A Lie superalgebra, or $(\mathbb{Z}_{2^{-}})$ graded Lie algebra, is a vector space $\mathfrak{G} = \mathfrak{G}_{0} \oplus \mathfrak{G}_{1}$ with a bilinear multiplication, \langle , \rangle , satisfying the graded versions of the axioms for Lie algebras: if $X \in \mathfrak{G}_{\alpha}$, $Y \in \mathfrak{G}_{\beta}$, and $Z \in \mathfrak{G}_{\gamma}$ ($\alpha, \beta, \gamma \in \{0, 1\}$), then

(1) $\langle X, Y \rangle = (-1)^{\alpha\beta} [Y, X]$ ("graded antisymmetry");

(2) $(-1)^{\alpha\gamma}\langle X, \langle Y, Z \rangle \rangle + (-1)^{\beta\alpha}\langle Y, \langle Z, X \rangle \rangle + (-1)^{\gamma\beta}\langle Z, \langle X, Y \rangle \rangle = 0$ (the "graded Jacobi identity").

Note that \mathfrak{G}_0 is a Lie algebra (in the ordinary sense). In what follows, it will always be tacitly assumed that \mathfrak{G} is finite dimensional and is defined over a field of characteristic 0.

The standard example of an ordinary Lie algebra is gl(n), the space of all $n \times n$ matrices, with [X, Y] = XY - YX. (For instance, a representation of a Lie algebra is a homomorphism into gl(n).) There is a corresponding standard example of a Lie superalgebra; it, too, is used to define representations. Let $V = V_0 \oplus V_1$ be a \mathbb{Z}_2 -graded vector space. We define $pl(V) = pl(V)_0 \oplus pl(V)_1$, where

$$pl(V)_{0} = \{ V \to V, T(V_{j}) \subseteq V_{j}, j = 0, 1 \};$$
$$pl(V)_{1} = \{ S: V \to V: S(V_{j}) \subseteq V_{1-j}, j = 0, 1 \};$$

thus $pl(V)_0$ consists of the linear maps on V taking each distinguished subspace to itself, and $pl(V)_1$ consists of the linear maps on V taking each to the other. The multiplication is given as follows: if X, Y are each in $pl(V)_0$ or $pl(V)_1$, where

$$\langle X, Y \rangle = XY - YX$$
 if either X or $Y \in pl(V)_0$;
 $\langle X, Y \rangle = XY + YX$ if X, $Y \in pl(V)_1$.

Thus the multiplication in pl(V) consists of both commutators and anticommutators. It is this fact which explains the sudden interest in Lie superalgebras among physicists; they offer a mathematical framework for combining various symmetry theories. (It seems to be somewhere between unclear and dubious, however, whether the resulting supersymmetry theories do jibe with