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A Lie superalgebra, or (Z2-) graded Lie algebra, is a vector space © = ©0 

© ©, with a bilinear multiplication, < , >, satisfying the graded versions of 
the axioms for Lie algebras: if X G @a, Y EL ®fi9 and Z G ©y (a, /?, y G 
{0, 1}), then 

(1) (X, Y) = (-l)a*[r, X] ("graded antisymmetry"); 
(2) (-ir<*> <r, z » + (-i)*a<r, <z, x)} + (-i)Y/*<z, <*, y » - o 

(the "graded Jacobi identity"). 
Note that ©0 is a Lie algebra (in the ordinary sense). In what follows, it will 

always be tacitly assumed that © is finite dimensional and is defined over a 
field of characteristic 0. 

The standard example of an ordinary Lie algebra is gt(n), the space of all 
n X n matrices, with [X, Y] = XY — YX. (For instance, a representation of a 
Lie algebra is a homomorphism into gl(n).) There is a corresponding standard 
example of a Lie superalgebra; it, too, is used to define representations. Let 
V = V0® Vx be a ^-graded vector space. We define pl(V) =pl(V)0® 

pl(V)i, where 

PKV)O ={V-»V, T(VJ) C VJJ = 0, 1}; 

pl{V)x - {S: V^ V: S(Vj) Q V^J - 0, l } ; 

thus pl(V)0 consists of the linear maps on V taking each distinguished 
subspace to itself, and/>/(K)j consists of the linear maps on V taking each to 
the other. The multiplication is given as follows: if X, Y are each inpl(V)0 or 
pl(V)v where 

<*, Y> - XY - YX if either X or Y G pl( V)0; 

(X, Y> = XY+ YXiiX, Y G/?/(K),. 

Thus the multiplication in pl( V) consists of both commutators and anticom-
mutators. It is this fact which explains the sudden interest in Lie superalge-
bras among physicists; they offer a mathematical framework for combining 
various symmetry theories. (It seems to be somewhere between unclear and 
dubious, however, whether the resulting supersymmetry theories do jibe with 


