2. J. Edmunds, Paths, trees and flowers, Canad. J. Math. 17 (1965), 449-467.
3. S. Cook, The complexity of theorem-proving procedures, Proc. 3rd ACM Sympos. on Theory of Computing, J. Assoc. Comput. Mach. (1971), 151-158.
4. A. Goldberg, On the complexity of the satisfiability problem, Ph.D. dissertation, Courant Institute of Mathematical Sciences, 1979.
5. R. Karp, Reducibility among combinatorial problems, R. Miller and J. Thatcher (eds.), Complexity of Computer Computations, Plenum Press, New York, 1972, pp. 85-103.

Ronald V. Book
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 3, Number 2, September 1980
© 1980 American Mathematical Society
0002-9904/80/0000-0416/\$01.75
The theory of Lie superalgebras; an introduction, by M. Scheunert, Lecture Notes in Math., vol. 716, Springer-Verlag, Berlin-Heidelberg-New York, $\mathrm{vi}+271 \mathrm{pp}$.

A Lie superalgebra, or $\left(\mathbf{Z}_{2^{-}}\right)$graded Lie algebra, is a vector space $\mathscr{B}=\mathscr{B}_{0}$ $\oplus \mathfrak{F}_{1}$ with a bilinear multiplication, \langle,$\rangle , satisfying the graded versions of$ the axioms for Lie algebras: if $X \in \mathscr{E}_{\alpha}, Y \in \mathscr{E}_{\beta}$, and $Z \in \mathbb{G}_{\gamma}(\alpha, \beta, \gamma \in$ $\{0,1\}$), then
(1) $\langle X, Y\rangle=(-1)^{\alpha \beta}[Y, X]$ ("graded antisymmetry");
(2) $(-1)^{\alpha \gamma}\langle X,\langle Y, Z\rangle\rangle+(-1)^{\beta \alpha}\langle Y,\langle Z, X\rangle\rangle+(-1)^{\gamma \beta}\langle Z,\langle X, Y\rangle\rangle=0$ (the "graded Jacobi identity").

Note that $⿷_{0}$ is a Lie algebra (in the ordinary sense). In what follows, it will always be tacitly assumed that \mathbb{F} is finite dimensional and is defined over a field of characteristic 0 .

The standard example of an ordinary Lie algebra is $g l(n)$, the space of all $n \times n$ matrices, with $[X, Y]=X Y-Y X$. (For instance, a representation of a Lie algebra is a homomorphism into $g l(n)$.) There is a corresponding standard example of a Lie superalgebra; it, too, is used to define representations. Let $V=V_{0} \oplus V_{1}$ be a Z_{2}-graded vector space. We define $p l(V)=p l(V)_{0} \oplus$ $p l(V)_{1}$, where

$$
\begin{gathered}
p l(V)_{0}=\left\{V \rightarrow V, T\left(V_{j}\right) \subseteq V_{j}, j=0,1\right\} \\
p l(V)_{1}=\left\{S: V \rightarrow V: S\left(V_{j}\right) \subseteq V_{1-j}, j=0,1\right\}
\end{gathered}
$$

thus $p l(V)_{0}$ consists of the linear maps on V taking each distinguished subspace to itself, and $p l(V)_{1}$ consists of the linear maps on V taking each to the other. The multiplication is given as follows: if X, Y are each in $p l(V)_{0}$ or $p l(V)_{1}$, where

$$
\begin{gathered}
\langle X, Y\rangle=X Y-Y X \quad \text { if either } X \text { or } Y \in p l(V)_{0} \\
\langle X, Y\rangle=X Y+Y X \text { if } X, Y \in p l(V)_{1}
\end{gathered}
$$

Thus the multiplication in $p l(V)$ consists of both commutators and anticommutators. It is this fact which explains the sudden interest in Lie superalgebras among physicists; they offer a mathematical framework for combining various symmetry theories. (It seems to be somewhere between unclear and dubious, however, whether the resulting supersymmetry theories do jibe with

