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Many mixed problems i.e. initial value-boundary value problems for partial
differential equations can be written in the form

du(t)/ dt = A(u(1)), u(0) = f. O

Here the unknown function # maps nonnegative time 1 € R* = [0, o) into a
Banach space X, A is an operator acting on its domain )(4) C X to X, and
the initial data f is in %D (4). The boundary conditions are absorbed into the
description of %)(A4), and saying that the solution takes values in ©D(4)
amounts to saying that the (time independent) boundary conditions hold for
all . We assume that 4 is a densely defined linear operator, and we are
interested in the case when the problem (1) is well posed, i.e. a solution exists,
it is unique, and it depends continuously (in a suitable sense) on the
ingredients of the problem, viz. f and 4. When this is the case let 7(f) map
the solution at time O (i.e. f) to the solution at time ¢ (i.e. #(¢)). Then the
uniqueness gives the semigroup property T(¢)T(s) = T(¢ + s) for t,s € R*,
and we have T(f) =“e''” at least formally; but in general 4 is an unbounded
operator so one must be careful.

The Hille-Yosida-Phillips theory of (one parameter strongly continuous)
semigroups of (linear) operators makes this all precise. The theory says that
(1) is well posed iff it is governed by a semigroup T = {T(?): t € R*} iff 4
generates a semigroup T; and moreover, A generates a semigroup 7 iff 4
satisfies certain explicitly verifiable conditions. For instance, when the semi-
group is contractive i.e. || 7(?)|| < 1for all # > 0, the exponential formula

T0f = Jim (1-74) 7

suggests that T can be recovered from A if (I — A4)™! is an everywhere
defined contraction (i.e. ||(I — A4)™'|| < 1) for each A > 0. In this case A4 is
called m-dissipative, and this condition is both necessary and sufficient for 4
to generate a contraction semigroup.



