RESEARCH ANNOUNCEMENTS

LEVELS IN ALGEBRA AND TOPOLOGY

BY Z. D. DAI, T. Y. LAM ${ }^{1}$ AND C. K. PENG

The level $s(A)$ of a (commutative) ring A is the smallest natural number s such that -1 is a sum of s squares in A. (If -1 is not a sum of squares in A, we say that $s(A)=\infty$.) If A is a field, a striking result of Pfister [3] says that $s(A)$ (if finite) is always a power of 2 , and indeed, all powers of 2 are possible. Knebusch and Baeza have obtained extensions of Pfister's result to semilocal rings, but little is known about levels of commutative rings in general. In [2, Problem 13], Knebusch has asked what type of integers can be the level of a ring (see also [1, p. 184]).

In this note, we announce the following.
Theorem 1A. For any $n \geqslant 1$, there exists an integral domain A with $s(A)=n$. Moreover, A can be chosen so that its field of quotients has any prescribed level $2^{r} \leqslant n$.

A form (homogeneous polynomial) $f \in A\left[x_{1}, \ldots, x_{m}\right]$ is said to be isotropic over A if there exists a unimodular vector $v \in A^{m}$ such that $f(v)=0$. (Otherwise, f is said to be anisotropic over A.) Define the sublevel $s^{\prime}(A)$ to be the smallest integer n such that $x_{1}^{2}+\cdots+x_{n+1}^{2}$ is isotropic over A. If 2 is invertible in A, it is easy to see that $s^{\prime}(A)$ is equal to either $s(A)$ or $s(A)-1$. If $s(A) \in\{1,2,4,8\}$, then in fact $s^{\prime}(A)=s(A)$.

Theorem 1B. For any $n \geqslant 1$, there exists an integral domain A with $s(A)=s^{\prime}(A)=n$. If $n \geqslant 3$ is odd, there exists an integral domain B with $s(B)$ $=n$ and $s^{\prime}(B)=n-1$.

Corollary. The pythagoras number of a ring A (i.e. the smallest integer r such that any sum of squares in A is a sum of r squares) can be any positive integer. (In fact, for the ring A in Theorem 1B, the polynomial ring $A[t]$ will have pythagoras number $n+1$.)

While the above results are of an algebraic nature, their proofs (at least as so far discovered) are purely topological. One uses ideas from homotopy and

[^0]
[^0]: Received by the editors March 28, 1980.
 1980 Mathematics Subject Classification. Primary 10J05, 13B25, 55M10; Secondary $10 \mathrm{Cxx}, 10 \mathrm{M} 05$, 13F20, 55P99.
 ${ }^{1}$ Supported in part by NSF.

