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RESEARCH ANNOUNCEMENTS 

LEVELS IN ALGEBRA AND TOPOLOGY 

BY Z. D. DAI, T. Y. LAM1 AND C. K. PENG 

The level s(A) of a (commutative) ring A is the smallest natural number s 
such that -1 is a sum of s squares in A. (If -1 is not a sum of squares in A, we 
say that s(A) = °°.) If A is a field, a striking result of Pfister [3] says that s(A) 
(if finite) is always a power of 2, and indeed, all powers of 2 are possible. 
Knebusch and Baeza have obtained extensions of Pfister's result to semilocal rings, 
but little is known about levels of commutative rings in general. In [2, Problem 
13], Knebusch has asked what type of integers can be the level of a ring (see also 
[ l ,p . 184]). 

In this note, we announce the following. 

THEOREM 1 A. For any n > 1, there exists an integral domain A with 
s(A) = n. Moreover, A can be chosen so that its field of quotients has any pre
scribed level 2r < n. 

A form (homogeneous polynomial) ƒ G A[xl9 . . . , xm] is said to be 
isotropic over A if there exists a unimodular vector u € Am such that ƒ (v) = 0. 
(Otherwise, ƒ is said to be anisotropic over A.) Define the sublevel s (A) to be 
the smallest integer n such that x\ + " • " + * » + ! is isotropic over A. If 2 is 
invertible in A, it is easy to see that s (A) is equal to either s(A) or s(A) - 1. If 
s(A) e {1, 2, 4, 8}, then in fact s (A) = s(A). 

THEOREM IB. For any n > 1, there exists an integral domain A with 
s(A) = s (A) = n. Ifn>3is odd, there exists an integral domain B with s(B) 
= nands(B) = n- 1. 

COROLLARY. The pythagoras number of a ring A (i.e. the smallest integer 
r such that any sum of squares in A is a sum of r squares) can be any positive 
integer. (In fact, for the ring A in Theorem IB, the polynomial ring A [t] will 
have pythagoras number n + 1.) 

While the above results are of an algebraic nature, their proofs (at least as 
so far discovered) are purely topological. One uses ideas from homotopy and 
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