HOMOGENEOUS EXTENSIONS OF C^* -ALGEBRAS AND K-THEORY. I¹

BY CLAUDE SCHOCHET

Let L denote the bounded operators on a complex, separable, infinite-dimensional Hilbert space, K the ideal of compact operators, Q = L/K the Calkin algebra, and $\pi: L \rightarrow Q$ the natural map. Brown, Douglas, and Fillmore (BDF) [1], [2] initiated the study of unitary equivalence classes of extensions of C^* -algebras of the form

$$0 \longrightarrow K \longrightarrow E \longrightarrow A \longrightarrow 0$$

$$\| \int_{0} \int_{0}^{T} \int_{0}^$$

for fixed separable nuclear C^* -algebras A. The resulting group of equivalence classes is denoted Ext(A), or Ext(X) when A = C(X), the ring of continuous complexvalued functions on a compact metric space X. In [2], BDF show that $Ext(X) \cong K_1(X)$ when X is a finite complex. If X is of finite dimension then Ext(X) has been calculated by Kahn, Kaminker, and the author (KKS) [3]:

$$\operatorname{Ext}(X) \cong {}^{s}K_{1}(X) \stackrel{\operatorname{def}}{\equiv} K^{0}(FX)$$

where ${}^{s}K_{*}(X) = K^{*}(FX)$ is Steenrod K-homology and FX is a CW-approximation for the function spectrum $\{F(X, S^{n})\}$. In particular, if X is a closed subset of S^{2n} then

$$\operatorname{Ext}(X) \cong [S^{2n} - X, Q^r] \equiv K^0(S^{2n} - X)$$

where Q^r denotes the group of invertible elements of Q with the subspace topology, and [X, Y] denotes basepoint-preserving homotopy classes of based maps $X \rightarrow Y$. Henceforth X and Y are understood to be finite-dimensional compact metric spaces.

For a topological space Y and *-algebra B, the continuous functions C(Y, B) form a *-algebra. In particular, we consider the algebra $C(Y, L_{*s})$, where L_{*s} denotes L with the strong-* topology. This is a C*-algebra with

© 1980 American Mathematical Society 0002-9904/80/0000-0304/\$02.00

Received by the editors November 7, 1979 and, in revised form, December 6, 1979.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46L05, 55N15; Secondary 46M20, 47C15, 55N07, 55N20, 55P25, 55U25.

Key words and phrases. Extensions of C^* -algebras, Brown-Douglas-Fillmore theory, Steenrod homology, K-homology theory.

¹Research partially supported by the National Science Foundation.