HOMOGENEOUS EXTENSIONS OF C^{*}-ALGEBRAS AND \boldsymbol{K}-THEORY. \mathbf{I}^{1}
 BY CLAUDE SCHOCHET

Let L denote the bounded operators on a complex, separable, infinite-dimensional Hilbert space, K the ideal of compact operators, $Q=L / K$ the Calkin algebra, and $\pi: L \rightarrow 2$ the natural map. Brown, Douglas, and Fillmore (BDF) [1], [2] initiated the study of unitary equivalence classes of extensions of C^{*}-algebras of the form

for fixed separable nuclear C^{*}-algebras A. The resulting group of equivalence classes is denoted $\operatorname{Ext}(A)$, or $\operatorname{Ext}(X)$ when $A=C(X)$, the ring of continuous complexvalued functions on a compact metric space X. In [2], BDF show that $\operatorname{Ext}(X)$ $\cong K_{1}(X)$ when X is a finite complex. If X is of finite dimension then $\operatorname{Ext}(X)$ has been calculated by Kahn, Kaminker, and the author (KKS) [3]:

$$
E x t(X) \cong{ }^{s} K_{1}(X) \stackrel{\text { def }}{\equiv} K^{0}(F X)
$$

where ${ }^{s} K_{*}(X)=K^{*}(F X)$ is Steenrod K-homology and $F X$ is a CW-approximation for the function spectrum $\left\{F\left(X, S^{n}\right)\right\}$. In particular, if X is a closed subset of $S^{2 n}$ then

$$
E x t(X) \cong\left[S^{2 n}-X, Q^{r}\right] \equiv K^{0}\left(S^{2 n}-X\right)
$$

where Q^{r} denotes the group of invertible elements of 2 with the subspace topology, and $[X, Y]$ denotes basepoint-preserving homotopy classes of based maps $X \rightarrow Y$. Henceforth X and Y are understood to be finite-dimensional compact metric spaces.

For a topological space Y and ${ }^{*}$-algebra B, the continuous functions $C(Y, B)$ form a ${ }^{*}$-algebra. In particular, we consider the algebra $C\left(Y, L_{* s}\right)$, where $L_{* s}$ denotes L with the strong.* topology. This is a C^{*}-algebra with

[^0]
[^0]: Received by the editors November 7, 1979 and, in revised form, December 6, 1979.
 1980 Mathematics Subject Classification. Primary 46L05, 55N15; Secondary 46M20, 47C15, 55N07, 55N20, 55P25, 55 U 25.

 Key words and phrases. Extensions of C^{*}-algebras, Brown-Douglas-Fillmore theory, Steenrod homology, K-homology theory.
 ${ }^{1}$ Research partially supported by the National Science Foundation.

