$K_{r}\left(\mathrm{Z} / p^{2}\right)$ AND $K_{r}(\mathrm{Z} / p[\epsilon])$ FOR $p \geqslant 5$ AND $r \leqslant 4$
 BY LEONARD EVENS AND ERIC M. FRIEDLANDER ${ }^{1}$

If R is a ring, $K_{0}(R)$ is the Grothendieck group of finitely generated projective R-modules, $K_{1}(R)$ is the abelianization of the group $G L(R)$ of invertible matrices over R, and $K_{2}(R)$ is the second homology group of $E(R)=$ $\operatorname{ker}\left(G L(R) \longrightarrow K_{1}(R)\right)$. Higher K-groups are defined as homotopy groups of a space associated to $G L(R)$ and provide additional homological invariants of the linear algebra of R. Unfortunately, these higher (degree greater than 2) K-groups appear difficult to compute even for very simple rings: in particular, no higher K-groups of rings with nilpotents have been computed. We present computations for two such rings, $\mathbf{Z} / p^{2} \mathbf{Z}$ and $\mathbf{Z} / p[\epsilon]$ (the dual numbers over \mathbf{Z} / p).

Before stating our results, we briefly mention other computations of higher K-groups. Quillen [9] computed $K_{i}\left(\mathbf{F}_{q}\right)$ for any $i \geqslant 0$ and any finite field \mathbf{F}_{q}. Browder [3], Harris and Segal [6], Quillen [11], and Soule [12] have partial results on higher K-groups of rings of integers in number fields. Borel [2] has computed the ranks of the K-groups of such rings. Lee and Szczarba [7] have computed $K_{\mathbf{3}}(\mathbf{Z})$. Moreover, Quillen [10] has proved many general theorems which enable one to convert known computations of various rings to computations of related rings.

We announce the following theorems whose proofs will appear in [5].
Theorem 1. Let $p \geqslant 5$ be a prime. Let $\mathbf{Z} / p[\epsilon]$ denote the ring (of order p^{2}) of dual numbers over \mathbf{Z} / p.

$$
\begin{aligned}
& K_{1}\left(\mathbf{Z} / p^{2}\right)=K_{1}(\mathrm{Z} / p[\epsilon])=\mathbf{Z} / p-1 \oplus \mathbf{Z} / p \\
& K_{2}\left(\mathbf{Z} / p^{2}\right)=K_{2}(\mathbf{Z} / p[\epsilon])=0 \\
& K_{3}\left(\mathbf{Z} / p^{2}\right)=\mathbf{Z} / p^{2}-1 \oplus \mathbf{Z} / p^{2} ; K_{3}(\mathrm{Z} / p[\epsilon])=\mathbf{Z} / p^{2}-1 \oplus \mathbf{Z} / p \oplus \mathbf{Z} / p \\
& K_{4}\left(\mathbf{Z} / p^{2}\right)=K_{4}(\mathrm{Z} / p[\epsilon])=0
\end{aligned}
$$

Of course, $K_{1}\left(\mathrm{Z} / p^{2}\right)$ and $K_{1}(\mathrm{Z} / p[\epsilon])$ are well known [1, V. 9.1], $K_{2}\left(\mathrm{Z} / p^{2}\right)$ was computed by Milnor [8], and $K_{2}(\mathrm{Z} / p[\epsilon])$ was computed by van der Kallen [13].

Received by the editors January 15, 1980.
AMS (MOS) subject classifications (1970). Primary 18F25, 18H10, 20G10; Secondary 18 G 40 .
${ }^{1}$ Partially supported by the N.S.F.

