$K_r(\mathbb{Z}/p^2)$ AND $K_r(\mathbb{Z}/p[\epsilon])$ FOR $p \ge 5$ AND $r \le 4$ BY LEONARD EVENS AND ERIC M. FRIEDLANDER¹

If R is a ring, $K_0(R)$ is the Grothendieck group of finitely generated projective R-modules, $K_1(R)$ is the abelianization of the group GL(R) of invertible matrices over R, and $K_2(R)$ is the second homology group of E(R) = $\ker(GL(R) \rightarrow K_1(R))$. Higher K-groups are defined as homotopy groups of a space associated to GL(R) and provide additional homological invariants of the linear algebra of R. Unfortunately, these higher (degree greater than 2) K-groups appear difficult to compute even for very simple rings: in particular, no higher K-groups of rings with nilpotents have been computed. We present computations for two such rings, $\mathbb{Z}/p^2\mathbb{Z}$ and $\mathbb{Z}/p[\epsilon]$ (the dual numbers over \mathbb{Z}/p).

Before stating our results, we briefly mention other computations of higher K-groups. Quillen [9] computed $K_i(\mathbf{F}_q)$ for any $i \ge 0$ and any finite field \mathbf{F}_q . Browder [3], Harris and Segal [6], Quillen [11], and Soule [12] have partial results on higher K-groups of rings of integers in number fields. Borel [2] has computed the ranks of the K-groups of such rings. Lee and Szczarba [7] have computed $K_3(\mathbf{Z})$. Moreover, Quillen [10] has proved many general theorems which enable one to convert known computations of various rings to computations of related rings.

We announce the following theorems whose proofs will appear in [5].

THEOREM 1. Let $p \ge 5$ be a prime. Let $\mathbb{Z}/p[\epsilon]$ denote the ring (of order p^2) of dual numbers over \mathbb{Z}/p .

$$K_{1}(\mathbb{Z}/p^{2}) = K_{1}(\mathbb{Z}/p[\epsilon]) = \mathbb{Z}/p - 1 \oplus \mathbb{Z}/p,$$

$$K_{2}(\mathbb{Z}/p^{2}) = K_{2}(\mathbb{Z}/p[\epsilon]) = 0,$$

$$K_{3}(\mathbb{Z}/p^{2}) = \mathbb{Z}/p^{2} - 1 \oplus \mathbb{Z}/p^{2}; K_{3}(\mathbb{Z}/p[\epsilon]) = \mathbb{Z}/p^{2} - 1 \oplus \mathbb{Z}/p \oplus \mathbb{Z}/p,$$

$$K_{4}(\mathbb{Z}/p^{2}) = K_{4}(\mathbb{Z}/p[\epsilon]) = 0.$$

Of course, $K_1(\mathbb{Z}/p^2)$ and $K_1(\mathbb{Z}/p[\epsilon])$ are well known [1, V. 9.1], $K_2(\mathbb{Z}/p^2)$ was computed by Milnor [8], and $K_2(\mathbb{Z}/p[\epsilon])$ was computed by van der Kallen [13].

© 1980 American Mathematical Society 0002-9904/80/0000-0203/\$02.00

Received by the editors January 15, 1980.

AMS (MOS) subject classifications (1970). Primary 18F25, 18H10, 20G10; Secondary 18G40.

¹ Partially supported by the N.S.F.