NUMBER THEORETICAL DEVELOPMENTS ARISING FROM THE SIEGEL FORMULA

BY S. J. HARIS

1. Introduction. Siegel Formula is the name Weil gave to an equality which relates a theta series with an Eisenstein series [16]. The original result of Siegel is quite arithmetic in nature, with special cases yielding for example Fermat's theorem that every prime $p \equiv 1(\bmod 4)$ is expressible as a sum of two squares in essentially one way; Jacobi's theorem on the number of ways of writing an integer as a sum of four squares-namely $8 \Sigma_{2 d+1 \mid n}(2 d+1)$ for n odd or $24 \Sigma_{2 d+1 \mid n}(2 d+1)$ for n even; and also Dirichlet's class number formula. In the more arithmetically accessible case, Siegel's theorem can be stated as follows:

Let h be a positive definite quadratic form in m variables, with integer coefficients, write

$$
\begin{aligned}
d(t) & =\#\left\{x \in \mathbf{Z}^{m} \mid h(x)=t\right\} \\
d_{p}(t) & =\operatorname{limit}_{t \rightarrow \infty} \frac{\#\left\{x \in\left(\mathbf{Z} / p^{r} \mathbf{Z}\right)^{m} \mid h(x) \equiv t\left(\bmod p^{r}\right)\right\}}{p^{r(m-1)}}, \\
d_{\infty}(t) & =\operatorname{limit}_{D \rightarrow\{t\}} \frac{\text { volume } h^{-1}(D)}{\text { volume }(D)},
\end{aligned}
$$

where D runs through the compact neighbourhoods of t and $h: \mathbf{R}^{m} \rightarrow \mathbf{R}$. Then we have $d(t)=d_{\infty}(t) \Pi_{p} d_{p}(t)$. (At least this formulation is correct when $m>2$ and the genus of h has only one class. See $\S 6$ for a discussion of genus, class of h.)

In general Siegel characterises his result as having the same quantitative relationship to the Hasse-Minkowski theorem, as the Jacobi Theorem mentioned above has to Lagrange's result that every integer is a sum of four squares.

One can ask also for the number of representations of an $n \times n$ integral, symmetric, positive definite matrix T by a given $m \times m$ one S, and once more Siegel has a similar result. Moreover, Siegel has generalized his theorem to T indefinite and where the coefficients lie in an algebraic number field only now the definition of the densities $d_{p}(t)$ are much more involved, with no ready arithmetic interpretation. The proofs consist of constructing an Eisenstein series $E(\tau)$ which behaves like the generating function $f(\tau)$ for our Diophantine problem:

[^0]
[^0]: Received by the editors March 15, 1979.
 AMS (MOS) subject classifications (1970). Primary 10-02, 14G99.
 Key words and phrases. Poisson summation formula, asymptotic expansions and Mellin transforms, Riemann hypothesis for hypersurfaces.

