SOLOMON'S CONJECTURES AND THE LOCAL FUNCTIONAL EQUATION FOR ZETA FUNCTIONS OF ORDERS

BY COLIN J. BUSHNELL AND IRVING REINER¹

Let A be a finite dimensional semisimple K-algebra, where K is either an algebraic number field or a complete P-adic field. Let R be a Dedekind domain with quotient field K, and let Λ be an R-order in A. Louis Solomon [3], [4] introduced a zeta function

$$\zeta_{\Lambda}(s) = \sum_{M \subseteq \Lambda} (\Lambda : M)^{-s},$$

where *M* ranges over all full left ideals of Λ . The series converges for $\operatorname{Re}(s) > 1$. Here, $(\Lambda : M)$ is the number of elements in Λ/M , and s is a complex variable. For the case where $\Lambda = R$, the above is the usual Dedekind zeta function of *R*, namely,

$$\zeta_R(s) = \sum (R:\mathfrak{a})^{-s},$$

where a ranges over all nonzero ideals of R.

Let P range over all maximal ideals of R, and let R_P , A_P , etc., denote P-adic completions. Solomon showed easily that

$$\zeta_{\Lambda}(s) = \prod_{P} \zeta_{\Lambda P}(s),$$

and introduced a "global" zeta function $\zeta_A(s)$, which depends on A and R but not on Λ , with the property that the P-part of $\zeta_A(s)$ coincides with $\zeta_{\Lambda P}(s)$ for almost all P. (To be explicit, this occurs whenever A_P is a direct sum of full matrix algebras over fields, and Λ_P is a maximal R_P -order in A_P .) Solomon's conjectures involve the comparison between $\zeta_A(s)$ and $\zeta_{\Lambda}(s)$ at arbitrary P's.

Let us place the above in the more general setting used by Solomon. Let L be a full Λ -lattice in an A-module V, and define

$$\zeta_L(s) = \sum_{M \subseteq L} (L:M)^{-s},$$

where *M* ranges over all full Λ -sublattices of *L*. To define the "global" function $\zeta_{V}(s)$, we start with the Wedderburn decomposition of *A*:

$$A = A_1 \oplus \cdots \oplus A_r, \quad A_i \cong M_{k_i}(D_i), \quad (D_i : F_i) = e_i^2, \quad 1 \le i \le r,$$

Received by the editors August 20, 1979; presented to the Second International Conference on Representations of Algebras, Ottawa, Canada, August 22, 1979.

AMS (MOS) subject classifications (1970). Primary 12A82, 12B37, 16A18.

¹The research of this author was supported by the National Science Foundation. © 1980 American Mathematical Society

^{0002-9904/80/0000-0104/\$02.25}