SOLOMON'S CONJECTURES AND THE LOCAL FUNCTIONAL EQUATION FOR ZETA FUNCTIONS OF ORDERS

BY COLIN J. BUSHNELL AND IRVING REINER ${ }^{1}$

Let A be a finite dimensional semisimple K-algebra, where K is either an algebraic number field or a complete P-adic field. Let R be a Dedekind domain with quotient field K, and let Λ be an R-order in A. Louis Solomon [3], [4] introduced a zeta function

$$
\zeta_{\Lambda}(s)=\sum_{M \subseteq \Lambda}(\Lambda: M)^{-s}
$$

where M ranges over all full left ideals of Λ. The series converges for $\operatorname{Re}(s)>1$. Here, $(\Lambda: M)$ is the number of elements in Λ / M, and s is a complex variable. For the case where $\Lambda=R$, the above is the usual Dedekind zeta function of R, namely,

$$
\zeta_{R}(s)=\sum(R: \mathfrak{a})^{-s}
$$

where \mathfrak{a} ranges over all nonzero ideals of R.
Let P range over all maximal ideals of R, and let R_{P}, A_{P}, etc., denote P-adic completions. Solomon showed easily that

$$
\zeta_{\Lambda}(s)=\prod_{P} \zeta_{\Lambda_{P}}(s)
$$

and introduced a "global" zeta function $\zeta_{A}(s)$, which depends on A and R but not on Λ, with the property that the P-part of $\zeta_{A}(s)$ coincides with $\zeta_{\Lambda_{P}}(s)$ for almost all P. (To be explicit, this occurs whenever A_{P} is a direct sum of full matrix algebras over fields, and Λ_{P} is a maximal R_{P}-order in A_{P}.) Solomon's conjectures involve the comparison between $\zeta_{A}(s)$ and $\zeta_{\Lambda}(s)$ at arbitrary P 's.

Let us place the above in the more general setting used by Solomon. Let L be a full Λ-lattice in an A-module V, and define

$$
\zeta_{L}(s)=\sum_{M \subseteq L}(L: M)^{-s}
$$

where M ranges over all full Λ-sublattices of L. To define the "global" function $\zeta_{V}(s)$, we start with the Wedderburn decomposition of A :

$$
A=A_{1} \oplus \cdots \oplus A_{r}, \quad A_{i} \cong M_{k_{i}}\left(D_{i}\right), \quad\left(D_{i}: F_{i}\right)=e_{i}^{2}, \quad 1 \leqslant i \leqslant r
$$

Received by the editors August 20, 1979; presented to the Second International Conference on Representations of Algebras, Ottawa, Canada, August 22, 1979.

AMS (MOS) subject classifications (1970). Primary 12A82, 12B37, 16A18.
${ }^{1}$ The research of this author was supported by the National Science Foundation.

