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Georg Cantor, his mathematics and philosophy of the infinite, by Joseph Warren 
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A century and a half ago in 1831 Gauss, in a letter to Schumacher, wrote: 
"I protest against an infinite quantity as an actual entity; this is never allowed 
in mathematics. The infinite is only a manner of speaking." 

Forty-one years later Georg Cantor, a young mathematician at Halle, was 
studying the uniqueness problem for trigonometric series. In 1870 he had 
proven that if a real function ƒ was represented by a trigonometric series 
which converged for all x, then the series was necessarily unique; in fact, 
uniqueness was guaranteed even if the set of exceptional points, where 
convergence failed, was discrete. By the following year he had extended his 


