ON IRREDUCIBLE MAPS

BY R. BAUTISTA

The notion of irreducible map was introduced by M. Auslander and I. Reiten in [3] and plays an important role in the representation theory of artin algebras.

We recall that an artin ring Λ is said to be an artin algebra if its center C is an artin ring and Λ is finitely generated left Λ -module. Now choose a complete set P_1, \ldots, P_s of representatives of the isomorphism classes of indecomposable projectives in mod(Λ), we will denote by pr Λ the full subcategory of mod Λ whose objects are P_1, \ldots, P_s . A map $g: X \to Y$ in mod(Λ) is said to be irreducible if g is neither a split monomorphism nor a split epimorphism and for any commutative diagram

f is a splittable monomorphism or h is a splittable epimorphism.

We study irreducible maps in $\operatorname{mod}(\Lambda)$ by using properties of the Jacobson radical of $\operatorname{mod}(\Lambda)$. We recall that the Jacobson radical of $\operatorname{mod}(\Lambda)$ is the subfunctor rad of the two variable functor Hom: $(\operatorname{mod}(\Lambda))^{\operatorname{op}} \times \operatorname{mod}(\Lambda) \longrightarrow \operatorname{Ab}$ defined by

 $rad(X, Y) = \{f \in Hom(X, Y) | 1 - gf \text{ is invertible for every } g \in Hom(Y, X)\}$ $= \{f \in Hom(X, Y) | 1 - fh \text{ is invertible for any } h \in Hom(X, Y)\}.$

It is easy to prove that if X and Y are indecomposables, then rad(X, Y) consists of all nonisomorphisms, from X to Y.

We can prove the following result:

PROPOSITION 1. Let C and D be indecomposables in $mod(\Lambda)$. Then (a) A map $f: C \rightarrow is$ irreducible iff $f \in rad(C, D)$ and $f \notin rad^2(C, D)$, where $rad^2(C, D)$ consists of all maps of the form t_1t_2 with $t_2 \in rad(C, X)$ and $t_1 \in rad(X, D)$.

© 1980 American Mathematical Society

© 1980 American Mathematical Society 0002-9904/80/0000-0007/\$02.00

Received by the editors July 9, 1979. AMS (MOS) subject classifications (1970). Primary 16A64.