A TOPOLOGICAL RESOLUTION THEOREM

BY SELMAN AKBULUT AND LARRY TAYLOR

We prove a topological analogue of the resolution theorem for algebraic varieties [H]. We show that every compact P.L. manifold M admits a framed stratification (every stratum has a product neighborhood) such that after a sequence of topological blow ups performed along the closed smooth strata we get a compact smooth manifold \widetilde{M} ($\partial \widetilde{M} = \emptyset$ if $\partial M = \emptyset$) and a degree one map (with Z/2 coefficients) $\pi \colon \widetilde{M} \to M$. The map π is a P.L. homeomorphism in the complement of a union of smooth submanifolds of the form $N_i \times W_i$, such that π collapses $N_i \times W_i$ to N_i in some order. This structure can be used to show that every compact P.L. manifold is P.L. homeomorphic to a real algebraic variety [AK]. This also gives a nice way of defining differential forms on P.L. manifolds by pushing down the relative forms from the smooth resolution spaces.

Define an A_0 -structure on a P.L. manifold to be a smooth structure, and call such manifold an A_0 -manifold. Inductively define an A_k -structure on a P.L. manifold M to be a decomposition

$$M = M_0 \cup_{\phi} \coprod_{i=1}^r N_i \times \operatorname{cone}(\Sigma_i)$$

for some r, where M_0 is an A_{k-1} -manifold with boundary; each Σ_i is a boundary of a compact A_{k-1} -manifold and is P.L. homeomorphic to a P.L. sphere; and N_i are smooth manifolds. Finally $\phi = \{\phi_i\}$ are maps describing the identification (as stratified sets) $\phi_i \colon N_i \times \Sigma_i \longrightarrow \partial M_0$ where the union is taken. We say M has an A-structure if it has an A_k -structure for some k.

To describe the blowing up process, let M be an A_k -manifold. Then $M=M_0\cup II_i\ N_i\times {\rm cone}(\Sigma_i)$ and we can choose compact A_{k-1} -manifolds W_i with $\partial W_i=\Sigma_i$. Construct the obvious A_{k-1} -manifold $\widetilde{M}_{k-1}=M_0\cup II_i\ N_i\times W_i$. There is the obvious P.L. map $\pi\colon \widetilde{M}_{k-1}\longrightarrow M$ which is the identity on M_0 and collapses each $N_i\times W_i$ onto N_i . We can iterate this process to get a resolution sequence

$$\widetilde{M} = \widetilde{M}_0 \xrightarrow{\pi} \widetilde{M}_1 \xrightarrow{\pi} \cdots \xrightarrow{\pi} \widetilde{M}_{k-1} \xrightarrow{\pi} M.$$

Received by the editors September 4, 1979.

AMS (MOS) subject classifications (1970). Primary 57C25, 55E15; Secondary 55F40.

Key words and phrases. P.L. mainfolds, A-manifolds, stratifications, resolutions, thickenings, classifying spaces.