THE QUEER DIFFERENTIAL EQUATIONS FOR ADIABATIC COMPRESSION OF PLASMA

BY GUDMUNDUR VIGFÚSSON¹

This announcement presents some results on the "Queer Differential Equations" (QDE) of adiabatically evolving plasma equilibria. These are nonlinear differential-functional equations of the form $\Delta \psi = F(V, \psi, \psi', \psi'')$, where $V = V(\psi)$ is the volume (area) inside the levelsets $\psi(\mathbf{r}) = \psi$, a constant, and the derivatives on the right hand side are with respect to the dependent variable V, e.g., $\psi'(V)$.

We describe properties of microcanonical averages and their derivatives and a simple example of the nonlinear problem. An existence and uniqueness theorem is given for the associated linearized problem, which is also a functionaldifferential equation. Finally we will mention an isoperimetric problem related to the geometry of QDE's.

A few of these results are in [1] and will be further expounded in [2] - [4]. For the initial development of this problem and the relevant physics see [5] - [7] and the references therein. For a related problem, see also [8], [9].

Averages. S is a simple domain in the plane and $z = \psi(\mathbf{r}), \mathbf{r} \in \overline{S}$, a surface such that $\psi \in C^{n,\alpha}(\overline{S}), n \ge 2, 0 \le \alpha < 1$. Assume that the level lines $\psi(\mathbf{r}) = \psi$ are simple and $\nabla \psi = \mathbf{0}$ at only one point $\mathbf{r}_0 \in S, \psi(\mathbf{r}_0) = \psi_0$. Let ∂S be the level line $\psi(\mathbf{r}) = \psi_1 \ (>\psi_0)$. $V = V(\psi)$ is defined to be the area inside the curve $\psi(\mathbf{r}) = \psi$ and $\psi(V)$ is the inverse of $V(\psi)$.

$$V'(\psi) = \oint_{\psi} |\nabla \psi|^{-1} ds$$

is continuous in the interval $I = (\psi_0, \psi_1]$.

The function $V(\mathbf{r}) = V(\psi(\mathbf{r}))$ is useful; it is C^1 in $\overline{S} \setminus \mathbf{r_0}$.

THEOREM 1. Let ψ be as described above and assume that \mathbf{r}_0 is an elliptic critical point. Then $V(\mathbf{r}) = V(\psi(\mathbf{r}))$ is also in $C^{n,\alpha}$ and \mathbf{r}_0 is an elliptic critical point for $V = V(\mathbf{r})$.

Consider $g \in C^{m,\alpha}(\overline{S})$ and define on I,

Received by the editors April 4, 1979.

AMS (MOS) subject classifications (1970). Primary 76W05; Secondary 35R20, 45J05, 45K05, 47H05.

¹Research supported by U. S. Department of Energy, Contract No. EY-76-C-02-3077.

^{© 1979} American Mathematical Society 0002-9904/79/0000-0407/\$02.00