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SINGULARITIES AND GROUP ACTIONS 

BY PETER ORLIK1 

To my parents 

1. Introduction. The emergence of Transformation Groups as a separate 
branch of mathematics about a hundred years ago is connected with the 
names of Sophus Lie and Felix Klein. The invariant theorists of the day 
asked to find all invariant polynomials of a given linear group G. Let us fix 
the field C and let/: Cn+1 -» C be a polynomial mapping. A related question 
asks for Aut(ƒ), the group of linear transformations leaving ƒ fixed. Call z a 
critical point of ƒ if the partial derivatives df/dz; vanish at z. A critical point is 
called isolated if it is the only critical point in some neighborhood of z. In the 
context of invariant theory ƒ is homogeneous of degree m. If m > 2, then 0 is 
a critical point, and if it is isolated, then it is the only critical point of/. Lie 
[49] noted (without proof; for history and a proof see Orlik and Solomon 
[59]): 

THEOREM. If G is a linear group leaving a homogeneous polynomial ƒ of 
degree m > 3 invariant, and the critical point of f at 0 is isolated, then G is 
finite. In particular, Aut( ƒ) is finite. 

In his famous lectures on the icosahedron Klein [45] observed the connec­
tion between the binary icosahedral group G and the polynomial f(z0, zx, z^ 
= ZQ + z\ + z\. The ring of invariant polynomials of a representation of G in 
SU(2) is generated by three homogeneous polynomials of degrees 6, 10, 15. 
There is one polynomial dependence among them which (up to coefficients) 
reads z% + z\ + z\ = 0. Thus C2/G is isomorphic to the hypersurface V = 
f~l(0) in C3. In fact V is the cone over Poincaré's dodecahedral space. The 
critical point 0 of ƒ is isolated and it is also called an isolated singularity of V. 
Such a singular point has a (nonunique) resolution, consisting of a nonsingular 
ajgebraic variety V and a proper map ir\ V-> V such that the restriction TT: 
V — 7r~l(0)-± V — 0 is an isomorphism. Finding a resolution is in general 
rather cumbersome. However, this polynomial has a symmetry which may be 
exploited, in that for t E C we have ƒ(*%, tl0zx, t

l5z^) = t^fiz^ zv z^), so Kis 
invariant under the action of the multipUcative group of nonzero complex 
numbers, C*. We shall return to this in §7. 

This survey will consider some highlights of the interaction between Trans­
formation Groups and Singularities from the last decade. I wish to thank I. 
Dolgachev, A. Durfee, H. Hamm, L. Kauffman, W. Neumann, T. Pétrie, R. 
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