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The Minkowski multidimensional problem, by Aleksey Vasil'yevich Pogorelov, 
translated by V. Oliker, with an introductory comment by L. Nirenberg, Wiley, 
New York, Toronto, London, Sydney, 1978, v + 106 pp., $13.75. 

The book under review is, to the reviewer's knowledge, the first exposition 
in English of an important topic in geometry since Busemann's text Convex 
surfaces (Interscience, 1958). It is hoped that this review, as well as Niren-
berg's Introductory commentary which prefaces the English translation, may 
help popularize this beautiful subject in the English reading mathematical 
community. 

The Minkowski problem, in its original formulation [l],1 deals with the 
determination of a closed, convex hypersurface F in euclidean «-space, in 
terms of a given, positive valued function ƒ(£) (£ = (£1?, . . . , £„), 2,-§2 = 1) 
defined on the unit hypersphere Sn~l

9 where ƒ(£) represents the reciprocal of 
the Gaussian curvature of F at the point where the outward unit normal is the 
vector £. The function ƒ (which we call the Minkowski data) must necessarily 
satisfy the exactness condition expressed by the vector equation 

f&QOMO - o, (l) 
the integration being meant over the sphere Sn~l. 

This problem was solved originally by Minkowski only in the following, 
"weak" sense: given the Minkowski data satisfying (1), there exists a closed, 
convex hypersurface F, unique up to a translation, such that, for any given, 
closed region G c Sn~l the integral 
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References in square brackets are in terms of the bibliography at the end of Pogorelov's book. 


