BOOK REVIEWS

Anti-invariant submanifolds, by Kentaro Yano and Masahiro Kon, Lecture Notes in Pure and Applied Mathematics, vol. 21, Marcel Dekker, Inc., New York, 1976, vii + 183 pp., \$19.75.

General introduction. This article is divided into two parts: Part I quickly recalls the basic concepts of differential geometry, including the notions of differentiable manifolds and Kählerian and Sasakian manifolds, while Part II is the review of the Yano-Kon book. (Some readers, familiar with differential geometry, may wish to skip Part I. For their benefit I have repeated the definitions of Kählerian and Sasakian manifolds at the start of Part II.)

Part I. Review of differential geometry. A topological n-manifold is a metrizable topological space M which locally looks like \mathbb{R}^n , in the following sense: each point $p \in M$ has a neighborhood U homeomorphic to some open set W in \mathbb{R}^n . If $x = (x_1, \ldots, x_n)$: $U \to W \subset \mathbb{R}^n$ is such a homeomorphism, then the pair (U, x) is called a coordinate chart. Two such charts (U, x) and (V, y) are smoothly related if either (a) $U \cap V = \emptyset$, or (b) $U \cap V \neq \emptyset$ and the maps $x \circ y^{-1}$: $y(U \cap V) \to x(U \cap V)$ and $y \circ x^{-1}$: $x(U \cap V) \to y(U \cap V)$ (defined on the open subsets $y(U \cap V)$ and $x(U \cap V)$ in \mathbb{R}^n) are smooth (i.e., of class C^{∞}). A differentiable n-manifold is a topological n-manifold M on which a class F of coordinate charts has been singled out. The class F must satisfy (a) every $p \in M$ is in some chart of F and (b) if (U, x) and (V, y) are charts in F, then they are smoothly related.

If *M* is a differentiable *n*-manifold, one can "do calculus on *M*". For example, one can introduce the notion of differentiable functions on *M*: a function $f: M \to \mathbb{R}$ is of class C^k if for each chart $(U, x) \in F$ the function $f \circ x^{-1}: x(U) \to \mathbb{R}$ is of class C^k on the open set x(U) in \mathbb{R}^n . Similarly, by considering compositions of the form $x \circ \gamma$, one can define a notion of differentiable maps γ from (say) an interval in \mathbb{R} to *M*.

Associated with each point p of a differentiable manifold M is an ndimensional real vector space, the *tangent space* $T_p M$. The fact that M admits such "linear approximations" is the central feature of the theory of differentiable manifolds; in particular, it explains the constant use of linear and multilinear algebra so characteristic of this theory. The most intuitive description of the tangent space is this: if $\gamma: (a, b) \to M$ is a smooth curve at p (i.e., a smooth map into M of an interval a < t < b containing t = 0 such that $\gamma(0) = p$) and if $(U, x) \in F$ is a chart containing p, then we can associate to γ a vector in \mathbb{R}^n , namely $v_{\gamma} = d((x \circ \gamma)(t))/dt|_{t=0}$; we say that two such curves at p, γ and σ , are equivalent if $v_{\gamma} = v_{\sigma}$ and we denote the equivalence class of γ by $[\gamma]$; then an element of T_pM is simply such an equivalence class and the vector space structure on T_pM is that induced by the bijection $[\gamma] \mapsto v_{\gamma}$ of T_pM with \mathbb{R}^n . (This construction does not depend on the particular chart at p that we happen to use.)

Analogously, we define a *complex n-manifold* to be a metrizable topological space M which is covered by a prescribed family F of "holomorphically