A HIGHER DIMENSION GENERALIZATION OF THE SINE-GORDON EQUATION AND ITS BÄCKLUND TRANSFORMATION

BY KETI TENENBLAT ${ }^{1}$ AND CHUU-LIAN TERNG ${ }^{2}$

The classical Bäcklund theorem ([1], [4], [5]) studies the transformation of hyperbolic (i.e. constant negative curvature) surfaces in R^{3} by realizing them as focal surfaces of pseudo-spherical line congruences. The integrability theorem says that one can construct a family of new hyperbolic surfaces in R^{3} from a given one. Bianchi showed how to construct algebraically another family of hyperbolic surfaces from this family.

It is well known that there is a correspondence betwen solutions of the Sine-Gordon equation

SGE

$$
\frac{\partial^{2} \phi}{\partial x^{2}}-\frac{\partial^{2} \phi}{\partial t^{2}}=\sin \phi
$$

and hyperbolic surfaces in R^{3} ([1], [4], [5]). Therefore Bäcklund's theorem provides a method for generating new solutions of SGE from a given one, and Bianchi's permutability theorem [5] enables one to construct more solutions by an algebraic formula. This technique has recently received much attention in the studies of soliton solutions of SGE [2] and has been used successfully in the study of solitons of other nonlinear equations of evolution in one space dimension. But generalizations to more space variables has been less successful.

A natural generalization would be to find a transformation theory for hyperbolic (i.e. constant negative sectional curvature) submanifolds in Euclidean space. É. Cartan [3] showed that hyperbolic n-manifolds locally immerse in $R^{2 n-1}$, but not in $R^{2 n-2}$. Moreover, [3] he proved the existence of "line of curvature coordinates", in which all components of the second fundamental form are diagonalized. J. D. Moore [6] improved this result and we have:

Theorem 1 (É. Cartan). Suppose M is a hyperbolic n-submanifold of $R^{2 n-1}$. Then locally M can be parametrized by its lines of curvature so that

[^0]
[^0]: Received by the editors December 4, 1978.
 AMS (MOS) subject classifications (1970). Primary 53B25; Secondary 35L60.
 1 Work done under partial support of CNP_{9}.
 2 Work done under partial support of NSF grant MCS 76-01692.

