BOOK REVIEWS

On numbers and games, by J. H. Conway, Academic Press, London, New York, San Francisco, 1976, ix + 238 pp., $\$ 26.50$.

Surreal numbers, by D. E. Knuth, Addison-Wesley, Reading, Massachusetts, 1974, 119 pp.,

And more than everything my son, o beware: the making of many books without end; and excessive studiousness, tiredness of flesh.
(Translated by Bill from Ecclesiastes XII, 12.)
Some readers know to play the game of nim well, fewer play a perfect annihilation game, and nobody knows whether there exists an opening move in chess that will guarantee a win for white. These games and many more, belong to the family of combinatorial games, by which we mean the set of all two-player perfect-information games without chance moves and with outcomes lose or win (and sometimes: dynamic tie). The motivation for ONAG may have been, and perhaps was-and I would like to think that it was-the attempt to bridge the theory gap between nim-like and chess-like games.
Why is there a gap?
Every combinatorial game can be described as a directed graph called game-graph, whose vertices are the game positions, and (u, v) is a directed edge if and only if there is a move from position u to position v. Denote by N the set of all positions from which the Next (first) player can force a win; by \boldsymbol{P} the set of all positions from which the Previous (second) player can force a win; and by T the set of all (dynamic) Tie positions, which are positions from which no player can force a win and therefore both can avoid losing. In an acyclic game-graph there cannot be any tie positions. The N, P, T classification of any game graph $R=(V, E)$ can be determined in $O(|V|+|E|)$ steps [8]. For both nim and chess, a finite game-graph can be constructed and the N, P, T classification can be determined. So both games are solvable in principle.

If we play nim with n piles, each pile containing at most k tokens, then the game-graph contains ($k+1)^{n}$ vertices. Suppose that in (generalized) chess played on an $n \times n$ board there are k different pieces. If k is about $n^{2} / 2$, then the game-graph of chess contains $O\left(2^{n^{2}}\right)$ vertices. So both game-graphs have exponentially many vertices, and thus both games appear intractable in the usual sense of computational complexity [1, Chapter 10], [14, Chapter 9], namely a computation appears to be required which is asymptotically exponential.
From a computational efficiency standpoint, the essential difference between nim and chess is that nim can be viewed as a disjunctive compound (sum) of independent games, namely the individual piles. A disjunctive

