BOOK REVIEWS

perfect rings. However, this latter book does not discuss Q.F. rings, but gives instead a broad discussion of Morita equivalence and Morita duality. So in spite of a large overlap, the aims of the books are still different.

I close the review with expressing the hope that the fact that the book under review is written in German won't frighten too many prospective readers away.

References

1. F. W. Anderson and K. R. Fuller, Rings and categories of modules, Springer-Verlag, Berlin and New York, 1974.

2. H. Bass, Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.

3. J. Dieudonné, Remarks on quasi-Frobenius rings, Illinois J. Math. 2 (1958), 346-354.

4. C. Faith, Rings with ascending chain condition on annihilators, Nagoya Math. J. 27 (1966), 179-191.

5. _____, Algebra. II, Ring theory, Springer-Verlag, Berlin and New York, 1976.

6. C. Faith and E. A. Walker, Direct sum representations of injective modules, J. Algebra 5 (1967), 203-221.

7. K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku, A 6 (1958), 83-142.

8. T. Nakayama, On Frobenius algebras. I, II, Ann. of Math. (2) 40 (1939), 611-633, Ann. of Math. (2) 42 (1941), 1-21.

IDUN REITEN

BULLETIN OF THE

AMERICAN MATHEMATICAL SOCIETY Volume 84, Number 5, September 1978

© American Mathematical Society 1978

Hopf spaces, by Alexander Zabrodsky, Mathematics Studies, No. 22, North-Holland, Amsterdam, 1976, x + 223 pp., \$18.50.

The subject of H-spaces is generally agreed to have begun in 1941 with the publication of Hopf's paper [5]. In the proceedings of the 1970 Neuchâtel conference on H-spaces, James [8] listed 347 entries for a bibliography on H-spaces. Since that time numerous articles on H-spaces have been published. It is therefore somewhat surprising that Zabrodsky's monograph is only the second book to appear which deals with H-spaces in general. Before discussing the book, I would like to provide some background on the subject itself.

It is quite easy to define the basic concept. An *H*-space (or Hopf space) consists of a topological space X with chosen point $* \in X$ and a continuous function $\mu: X \times X \to X$ called the multiplication or *H*-structure on X. The requirement is that * be a two-sided unit up to homotopy, that is, the maps $x \to \mu(x, *), x \to \mu(*, x)$, and the identity map of X are all to be homotopic. If in the definition we replace homotopy by equality and write $\mu(x, y)$ as $x \cdot y$, we obtain $x \cdot * = * \cdot x = x$. The multiplication is then called strict and we shall refer to the resulting object as a topological quasi-group, a precursor of a topological groups and the space of loops ΩY of an arbitrary space Y. The latter consists of continuous paths in Y parametrized by [0, 1] which begin and end at a fixed point of Y with multiplication of paths the same as in the definition of the fundamental group. *H*-spaces are studied because they are a natural object in homotopy theory and because they are a unifying concept