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perfect rings. However, this latter book does not discuss Q.F. rings, but gives 
instead a broad discussion of Morita equivalence and Morita duality. So in 
spite of a large overlap, the aims of the books are still different. 

I close the review with expressing the hope that the fact that the book 
under review is written in German won't frighten too many prospective 
readers away. 
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Hopf spaces, by Alexander Zabrodsky, Mathematics Studies, No. 22, North-
Holland, Amsterdam, 1976, x + 223 pp., $18.50. 

The subject of //-spaces is generally agreed to have begun in 1941 with the 
publication of Hopf s paper [5]. In the proceedings of the 1970 Neuchâtel 
conference on //-spaces, James [8] listed 347 entries for a bibliography on 
//-spaces. Since that time numerous articles on //-spaces have been 
published. It is therefore somewhat surprising that Zabrodsky's monograph is 
only the second book to appear which deals with //-spaces in general. Before 
discussing the book, I would like to provide some background on the subject 
itself. 

It is quite easy to define the basic concept. An //-space (or Hopf space) 
consists of a topological space X with chosen point * Œ X and a continuous 
function /A: X X Z-> X called the multiplication or //-structure on X. The 
requirement is that * be a two-sided unit up to homotopy, that is, the maps 
x -» ii(x, *), x -» ju(*, x\ and the identity map of X are all to be homotopic. 
If in the definition we replace homotopy by equality and write fi(x,y) as x -y, 
we obtain x • * = * • x = x. The multiplication is then called strict and we 
shall refer to the resulting object as a topological quasi-group, a precursor of 
a topological group. Two important classes of examples of //-spaces are 
topological groups and the space of loops Ü Y of an arbitrary space Y. The 
latter consists of continuous paths in Y parametrized by [0, 1] which begin 
and end at a fixed point of Y with multiplication of paths the same as in the 
definition of the fundamental group, //-spaces are studied because they are a 
natural object in homotopy theory and because they are a unifying concept 


