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Of course it isn't too important but I've always thought that Pitt is 
responsible for the result that any T: lp-*lq,p > q, is compact. The authors 
ascribe this to Paley (without reference). But, enough of this! 

The book is highly enjoyable reading for anyone and must reading for 
anyone interested in vector measures or the geometry of Banach spaces. 

The book, like most first editions, has misprints. No one will have difficulty 
with "language operators" (p. 148) or "lconverging" (p. 182) [when read in 
context] and serious readers will find the subscripts lost or interchanged in 
some of the displays. 

Thus the only serious mistake is the misspelling of the reviewer's name (p. 
253). 
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Jordan pairs, by Ottmar Loos, Lecture Notes in Math., vol. 460, Springer-
Verlag, Berlin and New York, 1975, xvi + 218 pp., $9.50. 
Jordan pairs are a generalization of Jordan algebras and Jordan triple 

systems.1 The archetypal example of a Jordan algebra is the hermitian n X n 
matrices x* » x (for x* =•* x ' the conjugate transpose) under the product 
U(x)y » xyx, while an example of a Jordan triple system is the rectangular 
n x m matrices under P(x)y » xy*x. Such Jordan systems have recently 
come to play important roles in algebra, geometry, and analysis. In particular, 
the exceptional Jordan algebra H3(K) of hermitian 3 x 3 matrices with 
entries from the Cayley numbers K has important connections with excep
tional geometries, exceptional Lie groups, and exceptional Lie algebras. 

Although the structure of finite-dimensional Jordan algebras is well known, 
the structure of Jordan triple systems is generally known only over algebra
ically closed fields. The main obstacle to attaining a complete theory for 
triple systems is the paucity of idempotents: most nonassociative structure 
theories lean heavily on Peirce decompositions relative to idempotents, and a 
general triple system may have few "idempotents" x with P{x)x * x. For 
example, the triple system obtained from the real numbers via P(x)y * 
-xyx has no nonzero idempotents at all. However, a well-behaved triple 
system does have many pairs of elements (x,y) such that P(x)y = x, 
P(y)x « y (in the above example, for any x =£ 0 we may take y » — x~l). 
Such a pair furnishes a pair of simultaneous Peirce-like decompositions of the 
space, which could provide useful structural information if the two didn't 
keep getting tangled up in each other. 

Even in Jordan algebras, many concepts involve a pair of elements (x,y). 
Frequently this takes the form of x having a certain property, such as 
idempotence (x2 * x) or quasi-invertibility (invertibility of 1 — x), in the 
>>-homotope; this roughly corresponds to the element xy having that particu
lar property, and so serves as a substitute for the associative product xy which 
doesn't exist within the Jordan structure. (The y-homotope of an associative 

*For a quick background survey of these systems see the article, Jordan algebras and their 
applications in this issue. 


