FINITE RICKART C^{*}-ALGEBRAS

BY DAVID HANDELMAN AND JOHN LAWRENCE ${ }^{1}$
Communicated by Barbara Osofsky, May 23, 1977

1. A C^{*}-algebra is Rickart [1] if the right annihilator of each element t is generated by a projection $1-R P(t)$. If in addition, $x x^{*}=1$ implies $x^{*} x=1$, the ring is called a finite Rickart C^{*}-algebra. In this note we annourree several new results on finite Rickart C^{*}-algebras. Detailed proofs will appear elsewhere.

Two projections e and f in a Rickart C^{*}-algebra are *-equivalent $(e \stackrel{*}{\sim} f)$ if there exists a w such that $w w^{*}=e$ and $w^{*} w=f$. Kaplansky asked whether left projections in a Rickart C^{*}-algebra were ${ }^{*}$-equivalent to right projections, that is, whether $R P(t) \stackrel{*}{\sim} L P(t)$ [5]. We have the following partial answer.

Theorem 1 [2]. In a finite Rickart C^{*}-algebra, left projections are equivalent to right projections. In fact $R P(t)$ and $L P(t)$ are unitarily equivalent for each element t in the algebra.

A consequence of this is the following.
Corollary 2 [2]. A simple homomorphic image of a finite Rickart C^{*} algebra is a finite $A W^{*}$-factor.

Theorem 3 [3]. If T is a finite Rickart C^{*}-algebra that is either abelian or an $n \times n$ matrix ring over some ring for $n>1$, then all matrix rings over T are also finite Rickart C^{*}-algebras.

A finite Rickart C^{*}-algebra is a subdirect product of its simple homomorphic images.

Theorem 4 [4]. In a finite Rickart C^{*}-algebra, the intersection of the maximal (two-sided) ideals is zero.

Applying Theorem 4 and Corollary 2, we have
Corollary 5 [4]. A finite Rickart C^{*}-algebra can be embedded in a finite $A W^{*}$-algebra.
2. Outline of the method. In [2] we show that a finite Rickart C^{*}-algebra T has an \mathcal{K}_{0}-continuous (unit) regular quotient ring R to which the involution on T can be lifted. Certain questions concerning finite Rickart C^{*}-algebras can then be 'lifted' to this quotient ring. This is implemented by a close study

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 16A30, 47L05.
 ${ }^{1}$ Research supported by NRC Grant A4540 and University of Waterloo Research Grant 131-7052.

 Copyright © 1978, American Mathematical Society

