A REMARK ON EXPONENTIAL SUMS

BY S. K. PICHORIDES

Communicated by R. T. Seeley, August 29, 1976

> ABSTRACT. The L^{1} norm $\|F\|_{1}$ and the absolute value M of the minimum of the real part of $F(x)=\exp \left(\right.$ in $\left._{1} x\right)+\cdots+\exp \left(\operatorname{in}_{N} x\right), n_{1}, \cdots, n_{N}$ distinct positive integers, satisfy the inequality $M \log M+\|F\|_{1} \geqslant$ Const $\log N$.

Let $0<n_{1}<\cdots<n_{N}$ be N distinct integers, c_{1}, \ldots, c_{N} complex numbers, and write

$$
F(x)=f(x)+i g(x)=c_{1} \exp \left(i n_{1} x\right)+\cdots+c_{N} \exp \left(i n_{N} x\right)
$$

Throughout this note C will denote a positive absolute constant (not always the same), integrals without limits of integration will be understood as taken over $[-\pi, \pi]$ with respect to the normalized Lebesgue measure (similarly for the corresponding norms) and N will be assumed to be large.

A well-known conjecture of Hardy and Littlewood asserts that if $c_{1}=$ $\cdots=c_{N}=1$ then

$$
\|F\|_{1}>C \log N
$$

(if the n_{i} 's are in arithmetic progression then we have $\|F\|_{1} \sim C \log N$). A method introduced by P. Cohen and further improved by H. Davenport and the author (see [1]) leads to the estimate

$$
\begin{equation*}
\|F\|_{1}>C(\log N / \log \log N)^{1 / 2} \tag{1}
\end{equation*}
$$

for any F with $\left|c_{i}\right| \geqslant 1, i=1, \ldots, N$. (1) appears to be the best known result up to now.

Let $M=\left|\min _{x} f(x)\right|$. Since

$$
2 M=\int(2 f+2 M) \geqslant\|2 f\|_{1}-2 M
$$

and $2 f(x) \exp \left(i n_{N} x\right)$ is of the same form as F with $2 N$ terms, (1) implies

$$
\begin{equation*}
M>C(\log N / \log \log N)^{1 / 2} . \tag{2}
\end{equation*}
$$

The case $c_{1}=\cdots=c_{N}=1$ of (2) has been proved by a method different than that of Cohen by K. F. Roth (see [2] where more information and references concerning these problems can be found). Again (2) appears to be the best known result concerning M. The example $2 f(x)=|G|^{2}-N$, where G has the

